
AD-A274 034'
AFrr/GCE/ENG/93D-13 111 1 1

D"VIC
SLECTF.
ar,!Z~ga ,9

A Method for Populating the Knowledge Base of

APTAS, a Domain-Oriented Application

Composition System

THESIS
Raleigh Albert Sandy, HII

Captain, USAF

AFIT/GCE/ENG/93D-13

for public raelewe an~d sale; iteI

distribution is u-Iii.ntI" . .

9!~l~~l3-37008

for public release; d~istribution unlimited

93 12 22 1 21

AFIT/GCE/ENG/93D-13

A METHOD FOR POPULATING THE KNOWLEDGE BASE OF

APTAS, A DOMAIN-ORIENTED APPLICATION

COMPOSITION SYSTEM

THESIS

Presented to the Faculty of the Graduate School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fuifillment of the

Requirements for the Degree of

Master of Science in Computer Engineering A o For
NTIS CRA&I
DTIC TAB 0
Ur;aiwounred [•
Jijutification

Raleigh Albert Sandy, IlI, B.S.E.E. By..........

Captain, USAF Dist: ibijtion i
Availability Codes
tAvail arid/ or

Dist special

December, 1993

DTiC QUALITY ITNSPEZED 3

Approved for public release; distribution unlimited

Acknowledgements

This thesis is the result of more effort than just my own. I am grateful to all the

support I received during this research. The quality of the entire thesis, from style to

content, is the direct result of my thesis advisor, Maj David Luginbuhl. Thanks, Maj

Luginbuhl, for all your time and patience. May God richly bless you in all your efforts.

Chapters H and III were really a combination of my own work and that of Capt

Russell Warner. Thanks, Russ (and Marilee) for all your comments and contributions. I

pray you have a healthy son who is as intelligent and helpful as both of you.

Much of the information in Chapter IV resulted from contributions from several

Lockheed employees: Stan Jensen, Lori Ogata, and Joe Louie. I sincerely appreciate the

quick (and patient) responses to all my questions. It was a pleasure to work with you all.

The formal support was only a small portion of the support I received in writing this

thesis. My wife was the cornerstone of anything accomplished in this research. Thanks,

Janet, for your patience and encouragement. My love for you has been strengthened

through this experience, and I thank God for blessing me with such a perfect wife.

My parents were also strong supporters. Most of the style quality is the result of the

editing skills of Pat Sandy. Mom, you are the greatest. A son could not ask for a better

mother than you. Dad, thank you for your work ethic, your positive encouragement, and

your presence during my most difficult time (the defense). Both of you have made the 18

months more endurable through your prayers and encouragement.

What would it all be for without my children? Thanks, Lee, for all the study breaks

and reality checks. Someday, son, you will do wonderful things for the Lord. Thanks,

Courtney, for the much needed naps. You are just as beautiful and sweet as your mother.

I pray that you and Lee will both remain faithful to Christ and will be prepared when He

returns.

How about the humor that kept my sanity? Thanks, Dave Mezera, for being an

awesome friend (and brother). Oh yace! Thanks, Doug Looney and Tony Moyers, for

breakfast relief. Thanks, Jeff Miller and Jay Cossentine, for sound effects and lighting.

Dooh!

ii

Even with all this support, something could have gone wrong. However, because

of the exceeding grace of the Lord Jesus Christ, I have the assurance that no trial or

tribulation will ever be more than I can bear. It was not by my talent and strength, the

Lord (through the Holy Spirit) provided all the talent and strength required to accomplish

this research. As Ray Boltz so appropriately sings, "No matter what tomorrow brings, or

what it has in store, I know I will praise the Lord!"

Raleigh Albert Sandy, III

11i.°

Table of Contents

Page

Acknowledgements ii

List of Figures ix

Abstract ... xi

1. Research Introduction 1-1

1.1 Background 1-1

1.2 Knowledge-Based Software Engineering 1-2

1.3 Knowledge Bases - A Population Problem 1-4

1.4 Research Scope 1-4

1.5 Research Approach 1-5

II. Literature Review 2-1

2.1 Introduction 2-1

2.2 Domain Analysis 2-2

2.3 Systematic Reuse 2-7

2.4 Application Composition Systems 2-9

2.5 Summary 2-9

III. Knowledge Base Population Methodology 3-1

3.1 Introduction 3-1

3.2 Generic Domain-Oriented Application Composition System . 3-1

3.2.1 Compose Applications 3-4

3.2.2 Knowledge Base 3-4

3.2.3 Populate Knowledge Base 3-5

3.3 Domain Models and Reuse Infrastructures 3-6

iv

Page

3.3.1 Domain Model 3-8

3.3.2 Reuse Infrastructure 3-9

3.4 Domain Analysis Research 3-9

3.4.1 Prieto-Diaz's Research 3-10

3.4.2 Arango's Research 3-11

3.5 Knowledge Base Population Process 3-13

3.5.1 Create/Evolve Domain Model 3-14

3.5.2 Abstract Component Behavior 3-15

3.5.3 Design Reuse Infrastructure 3-17

3.5.4 Implement Reusable Components 3-18

3.5.5 Evaluate Domain Development 3-19

3.5.6 Reusable Applications 3-20

3.6 General Process Support and Constraints 3-21

3.7 Summary 3-22

IV. APTAS Knowledge Base Population Process 4-1

4.1 Introduction 4-1

4.2 Application Composition in APTAS 4-1

4.2.1 Forms Generator and Display 4-3

4.2.2 Architecture Generator 4-3

4.2.3 Graphical User Interface 4-4

4.2.4 CIDL Code Synthesis Engine 4-4

4.2.5 Compiler, Execution Environment, and Run-Time In-

terface 4-5

4.3 APTAS Knowledge Base 4-5

4.3.1 Specification Taxonomy 4-7

4.3.2 Architecture Construction Rules 4-10

4.3.3 Display Conventions 4-13

v

Page

4.3.4 Type Descriptions 4-16

4.3.5 Library Components Structure 4-16

4.3.6 Library Modules 4-19

4.3.7 Coding Rules 4-20

4.3.8 Synthesis Support 4-20

4.4 APTAS Knowledge Base Population Process 4-21

4.5 Instantiating the Knowledge Base Population Process 4-22

4.5.1 Create/Evolve Domain Model 4-23

4.5.2 Abstract Primitive Module Behavior 4-25

4.5.3 Design Domain Taxonomy and Coding Knowledge Base 4-26

4.5.4 Implement Primitive Modules 4-29

4.5.5 Evaluate Domain Development 4-30

4.6 Summary 4-32

V. A Typical APTAS Knowledge Base Population 5-1

5.1 Introduction 5-1

5.2 Creating the Tracking Domain Model 5-2

5.3 Designing the Tracking Knowledge Base 5-5

5.4 Evolving the Tracking Domain Model 5-7

5.5 Abstracting the Behavior of the Intersecting Tracks Generator 5-8

5.6 Implementing the Intersecting Tracks Generator 5-10

5.7 Evaluating the Tracking Domain Development 5-11

5.7.1 Evaluating the Tracking Domain Model 5-12

5.7.2 Evaluating the Tracking Knowledge Base 5-12

5.7.3 Evaluating the Primitive Module Abstractions . . . 5-14

5.7.4 Evaluating the Library Module Implementations . 5-15

5.8 Summary 5-15

vi

Page

VI. Research Conclusions 6-1

6.1 Objectives 6-1

6.2 Accomplishments 6-1

6.3 Conclusions 6-6

6.3.1 General Population Process Outline Conclusions . . 6-6

6.3.2 Formal Population Process Conclusions 6-7

6.4 Future Knowledge Base Population Research Topics 6-8

6.5 Final Remarks 6-10

Appendix A. Domain Model A-1

A.1 Domain Model Grammar A-1

A.2 Creating the Initial Domain Model File A-2

A.2.1 Parse Knowledge Base Files A-2

A.2.2 Reverse Transformation A-3

A.2.3 Write Domain Model File A-3

A.3 Evolving the Domain Model A-3

A.3.1 Update TRACKELENV-IhNNENT Module Definition.. A-4

A.3.2 Update TRACKING Elicitation Form A-4

A.3.3 Create INTERSECTING_.IAUCKSGENERkTOR Module Def-

inition A-5

A.3.4 Create TRACKINGTARGET.HODELS Elicitation Form.. A-6

A.4 Evaluating the Domain Model A-8

Appendix B. APTAS and its Knowledge Base]B-1

B.1 Knowledge Base Grammars B-1

B.1.1 Specification Taxonomy and Architecture Construc-

tion Rules B-2

B.1.2 Library Component StructuresB-3

B.1.3 Display Conventions B-3

vii

Page

B.1.4 Type Descriptions B-5

B.2 Transforming the Domain Model into the Knowledge Base B-5

B.3 Capabilities and Limitations of APTAS B-5

Appendix C. REFINE Source Code C-1

Bibliography BIB-1

Vita VITA-1

viii

List of Figures

Figure Page

2.1. Domain Analysis Approach Proposed by Prieto-Diaz 2-3

2.2. Domain Analysis and Software Development 2-7

2.3. An OCU Subsystem 2-8

3.1. Generic Domain-Oriented Application Composition System (G-DOACS) 3-3

3.2. Producing Reusable Workproducts 3-10

3.3. Develop Reuse Infrastructure 3-12

3.4. Knowledge Base Population 3-14

4.1. The APTAS Composition Process Data Flow Diagram 4-2

4.2. Association of Information Between Knowledge Base Categories 4-7

4.3. Sample Form Definition 4-8

4.4. Grammar for Conditional Expressions 4-9

4.5. Sample Construction Rule Definition 4-11

4.6. Sample Display Rule 4-14

4.7. Sample Relation Driver 4-15

4.8. Sample Type Descriptions 4-16

4.9. Sample Library Component Structure 4-17

4.10. Knowledge Base Population Process for APTAS 4-22

4.11. Domain Model Structure 4-25

4.12. Method to Design a Domain Taxonomy and Coding Knowledge Base.. 4-27

5.1. Reverse Engineering Procedure 5-2

5.2. Reverse Transformation Predicates 5-3

5.3. Partial Tracking Domain Model 5-4

5.4. Forward Transformation Procedure 5-5

ix

Figure Page

5.5. Forward Transformation Postconditions 5-6

5.6. Evolved Tracking Domain Model 5-8

5.7. INTERSECTING TRACKS GENERATOR Primitive Module Structure 5-9

5.8. INTERSECTING TRACKS GENERATOR Abstract Behavior 5-10

5.9. INTERSECTING TRACKS GENERATOR Primitive Module Implementation. 5-11

5.10. Domain Model Evaluation Conditions 5-12

6.1. Association of Information Between Knowledge Base Categories . 6-3

A.1. Domain Model Grammar A-1

A.2. Reverse Engineering Procedure A-2

A.3. Original TRACKEREINVIRONMENT Module Architecture A-4

A.4. New TRACKER.ENVIRON1ENT Module Architecture A-5

A.5. New Question in TRACKER Form A-5

A.6. INTERSECTING TRACKS GENERATOR Primitive Module Structure A-6

A.7. TRACKINGTARGETNODELS Form Definition A-7

A.8. Domain Model Evaluation Conditions A-8

B.1. APTAS Knowledge Base Structure B-1

B.2. Specification Taxonomy and Architecture Construction Rules Grammar. B-2

B.3. Library Component Structures Grammar B-3

B.4. Display Convention Grammar B-4

B.5. Type Description Grammar B-5

B.6. Forward Transformation Postconditions B-6

x

AFIT/GCE/ENG/93D-13

Abstract

A formal process is described for populating the knowledge base of the Automatic

Programming Technologies for Avionics Software (APTAS) system. This process was de-

veloped using a general knowledge base population process that applies to many knowledge-

based software engineering systems. This general process is also described. The formal

process for APTAS was demonstrated by storing new information from the radar tracking

domain into the knowledge base of APTAS. Several procedures (some automatic and some

manual) were implemented to support the formal process.

xi

A METHOD FOR POPULATING THE KNOWLEDGE BASE OF

APTAS, A DOMAIN-ORIENTED APPLICATION

COMPOSITION SYSTEM

L Research Introduction

1.1 Background

Software system development methods must take advantage of new technologies to

catch up to hardware system development methods. Software engineering must become

more disciplined and produce better models of software development that capture reli-

able development practices and formalize engineering knowledge. These new models will

improve software system quality and will expedite software system production (9:258).

Producing models of software development depends on advances in many areas of

technology (4:92-93). These areas include software reuse, artificial intelligence, formal

methods, and object-oriented development. Expediting software system production de-

pends on advances in software reuse. Implementation of software reuse must advance

from opportunistic reuse of source code to systematic reuse of software system specifica-

tions. Capturing development practices and fccmalizing engineering knowledge depend on

advances in artificial intelligence (particularly in expert systems, knowledge acquisition,

and knowledge representation). Improving software system quality depends on advances

in formal methods. Practical application of formal methods must advance from repre-

senting small-scale software systems to specifying large-scale systems using mathematical

formalisms. Becoming more disciplined in software development depends on advances

in object-oriented programming. Programming languages and tools that support object-

oriented development are changing the way software engineers think about software system

development.

Software engineers currently use several different software development methods.

The inherent limitations of a particular method often offset the method's benefits. The

1-1.

waterfall model is well-understood and often easy to manage. However, waterfall model

development does not result in a software product (other than documentation) until devel-

opment completes and rarely involves the users. Incremental development usually results

in system capabilities early in development. However, incremental development depends

on other development methods and is often not feasible for some software systems. Rapid

prototyping also results in system capabilities early in development and definitely involves

the users. However, rapid prototyping can result in a system that is not intended for pro-

duction and that is difficult to maintain. The spiral model is an attempt to combine other

development methods through an iterative process to manage risks in software develop-

ment (24:48). However, spiral model development requires more highly trained personnel

because of its complexity. Automatic code generation is also an attempt to improve the

other limitations but cannot guarantee efficient code. None of these software development

methods, by themselves, provide the foundation needed to catch up to current hardware de-

velopment methods. However, another development method may provide this foundation;

a method involving knowledge-based software engineering.

1.2 Knowledge-Based Software Engineering

Knowledge-based software engineering provides a user with the capability to specify,

prototype, and generate new applications within modeled application domains. Users

specify applications using familiar domain-specific terminology under the guidance of a

knowledge-based software engineering system. Users rapidly prototype applications by

executing an their specifications. Users incrementally modify specifications until tested

behaviors meet the specific requirements. When prototypes meet the requirements, users

automatically generate executable applications directly from the final specifications. Users

do not have to know a particular programming language since application development

occurs using familiar terminology from the application domain.

The concepts of knowledge-based software engineering are derived from a combi-

nation of other software development techniques and key areas of software engineering

technology. Users develop their own applications with a language they understand and

satisfy their requirements through rapidly prototyping application behaviors. Knowledge-

1-2

based software engineering can potentially realize large improvements in software quality

and expedite software production.

Application composition systems, a class of knowledge-based software engineering

systems, interface with users through a composition environment. This environment helps

users to specify (and possibly prototype) applications within a modeled application do-

main. The environment accesses information stored in a knowledge base. The knowledge

base captures current information about both modeled application domains and software

development practices. Other environments of these systems, such as a code generation

environment, also access information stored in the knowledge base.

A group of software engineers at the Air Force Institute of Technology (AFIT) has

concentrated their research on advancing the technology of knowledge-based software engi-

neering systems. The group is studying two knowledge-based software engineering systems:

Architect and the Automatic Programming Technologies for Avionics Software (APTAS)

system (17, 2, 32, 41).

Architect was developed using the Software RefineryTM Environment to study ad-

vances in knowledge-based software engineering. Architect's capabilities range from the

application of software architectures to the implementation of domain-specific languages.

The system, however, has a limited code generation capability. Current research includes

improving the visualization of domain information within the application composition en-

vironment (7); formalizing software architectures (10) and the services they provide (42);

modeling the real-time circuit domain (38), the digital signal processing domain (39), and

the application executive domain (42); and integrating the use of an object-oriented data

base (6). Research also includes developing a process to populate the Architect knowledge

base (39).

APTAS is a prototype knowledge-based software engineering system developed for

the Air Force by Lockheed (17). Although the knowledge base for APTAS is well-structured,

the system is currently limited to composing and simulating simple radar tracking appli-

cations. This thesis focuses on studying the APTAS knowledge base.

1-3

1.3 Knowledge Bases - A Population Problem

It has already been mentioned that many knowledge-based software engineering ca-

pabilities depend on the information stored in the knowledge base. Systems like Architect

and APTAS expect particular forms of information from their knowledge bases. The

knowledge base organizes information about a modeled application domain into several

categories. Domain-specific information might represent entity structures and their be-

haviors, as well as rules about the composition of applications within the domain. Other

;nformation might represent particular methods the system employs when specifying, sim-

ulating, or generating applications. All this information must either already exist in the

knowledge base or some method must exist to store new information. The APTAS system

has limited information stored in its knowledge base. APTAS documentation includes a

brief description of a process to populate the knowledge base with new information. How-

ever, this process is too informal and too complex. The goal of this thesis is to solve the

following problem:

There is currently no understood formal process to efficiently capture
and store new domain information within the APTAS Knowledge
Base.

This thesis proposes a documented population process to store new information in the

APTAS Knowledge Base, known as the Tracking Taxonomy and Coding Knowledge Base.

1.4 Research Scope

This thesis documents a formal process to populate the Tracking Taxonomy and

Coding Knowledge Base. The formal population process results from a general process

outline that applies to many knowledge-based software engineering system. For instance,

Warner (39) has used this general process outline to study the same problem with the

Architect system. The intention is to suggest important characteristics of the population

process applying to all knowledge-based software engineering systems with a specific focus

on developing the formal knowledge base population process for APTAS.

This thesis then demonstrates the process by storing new information from the radar

tracking domain in the knowledge base. The population process requires expert knowledge

1-4

from an application domain. Domain information normally originates from an expert

through a formal knowledge acquisition process. Because information was not acquired

using a formal knowledge acquisition process, only enough new information was added to

sufficiently demonstrate the formal population process.

Finally, this research results in several procedures that automate some of the pop-

ulation process activities. These procedures simply demonstrate the formal nature of the

process and the impact of the process to software system development. Their use is not

intended for anything other than knowledge base population research.

1.5 Research Approach

The APTAS knowledge base population problem is solved in several steps. After

some of the research related to this problem is analyzed, this thesis outlines a general

knowledge base population process. Based on documentation about the APTAS system

and the general process outline, this thesis develops a formal population process for the

Tracking Taxonomy and Coding Knowledge Base. This thesis concludes with a process

demonstration and several suggestions for further research.

Chapters II and III were co-written with Warner (39) because of the similarity be-

tween the two research efforts. Chapter II describes published literature that relates to

knowledge-based software engineering and the knowledge base population problem. Sub-

jects studied included domain analysis, domain modeling, and systematic reuse. Other

general areas of interest include knowledge acquisition, automatic code generation, and

formal methods. Some of the fundamental concepts for the general process outline were

derived from several articles about software reuse and domain analysis.

Chapter III describes a general population process that applies to a specific class

of knowledge-based software engineering systems. The process consists of five activities

ranging from domain-specific, system-independent domain analysis activities to system-

dependent implementation activities. The chapter concludes with a discussion of several

constraints that are involved when applying the process to specific systems.

1-5

Chapter IV analyzes the APTAS system and its knowledge base prior to instantiating

a formal process. I examine the relationship between the various system components to the

knowledge base. I also define the specific categories of information stored in the Tracking

Taxonomy and Coding Knowledge Base. The formal population process uses definitions

for the structures of the application domain and the knowledge base. Procedures for the

population activities result from the application of the general process outline.

Chapter V demonstrates the formal population process by adding new information

to the knowledge base. I develop a simple model of the radar tracking domain and use it

to populate the APTAS Knowledge Base. The procedures that automatically transform

the radar tracking domain into the knowledge base representation show the potential ac-

celeration in software production. The procedures that evaluate each population activity

show the potential improvement in software quality.

Chapter VI summarizes the results of this thesis. I suggest several possible topics

for future research. These future research topics include populating knowledge bases in

general and studying the APTAS system.

1-6

II. Literature Revieu

2..1 Introduction

Many researchers are studying methods to encapsulate knowledge needed for software

engineering into reusable models. They have proposed ideas to improve knowledge-based

software engineering and shorten the gap between software and hardware system develop-

ment. Some of this research is directly related to our knowledge base population problem.

The technology involved in the effective modeling of application domains is very im-

portant to the success of knowledge-based software engineering. Software engineers must

develop formal knowledge acquisition processes that solve the knowledge base population

problem. Section 2.2 reviews ideas we found useful in our research from current literature

in the areas of domain analysis and domain modeling. Both domain analysis and domain

modeling focus on the effective modeling of application domains. "There is a strong rela-

tionship between [domain analysis] and knowledge acquisition. Building a knowledge base

and defining heuristics for an expert system are basically the same problems as [domain

analysis]" (11).

Systematic reuse is another topic that supports knowledge-based software engineer-

ing. Arango defines systematic reuse as an activity "in which information is systematically

acquired and reused in software construction under the control of some management guide-

lines and costing models" (3:84). The knowledge base must support the code generation

component of a knowledge-based software engineering system by providing a library of

reusable software specifications or implementations. Section 2.3 reviews ideas we exam-

ined in the area of systematic reuse.

There is a class of knowledge-based software engineering systems known as appli-

cation composition systems that employ techniques like automatic code generation and

formal methods to transform specifications into executable code. Because both Architect

and APTAS fall into this class of systems, we studied the characteristics of application

composition systems. Our study focused on the application composition process and the

'This chapter was co-written with Rusel Warner and also appears in (39).

2-1

knowledge base structures. Section 2.4 describes the composition process and knowledge

base structures of several application composition systems.

Several terms require definition before we begin our review of the related research.

We have already used the term application domain that we define as "a coherent set

of systems that exhibits common features and functionality across existing and proposed

instances" (28). Information occurring within the scope of an application domain, such

as functional behaviors and parameters, is considered domain knowledge. The term

domain analysis was first introduced by Neighbors as "the activity of identifying objects

and operations of a class of similar systems in a particular problem domain" (26). Prieto-

Diaz later defined domain analysis as the process where "information used in developing

software systems is identified, captured, and organized with the purpose of making it

reusable" (31:47).

2.2 Domain Analysis

Domain analysis is the first, and probably most important, step in adding new in-

formation to a knowledge base. Domain analysis was originally adopted as a process to

automate several aspects of software development including specification analysis, verifi-

cation, and application generation (3:82). Early research into domain analysis uncovered

the importance of organizing domain knowledge into reusable components. Researchers

learned that identifying specific knowledge to reuse through domain analysis was no easy

task. Neighbors discovered that "the key to reusable software is captured in domain anal-

ysis in that it stresses the reusability of analysis and design, not code" (27) and later

proposed a domain analysis method called DRACO. Other researchers have also proposed

domain analysis approaches, and we summarize some of these in the following paragraphs.

Prieto-Diaz (30) proposed the data flow model shown in Figure 2.1 that represents his

domain analysis approach. In his model, the domain expert (a knowledgeable person in that

particular field) and domain analyst (a person with training and experience in analyzing

domains) identify and select the domain knowledge. Possible sources for domain knowledge

include expert advice, customer surveys, technical literature, and existing implementations,

as well as current and future requirements. The domain analyst then assists the domain

2-2

2.5.mub

We

Figure 2.1 Domain Analysis Approach Proposed by Prieto-Diaz (30:67).

expert in abstracting and encapsulating the collected domain knowledge into a subset of

the expected outputs (i.e., domain model, domain language, domain taxonomy), as well as

domain standards and reusable components. The entire approach is implicitly iterative.

Arango based his view of domain analysis on 2the systematic and incremental ap-

proazimation to a definition of an ontology and semantics for a problem domain" (3:83). He

proposed an operational definition of domain analysis focused on a reuse-based task (3:83):

Given:

1. a partial, nonformal description of a problem domain

2. a model of a reuser as a learning system
Find: a systematic method to

1. identify information in the problem domain which, if available to the reuser
in appropriate form, would allow it to attain a specified level of perfor-
mance,

2. capture the information identified as relevant, and

3. evolve the acquired information to enhance or maintain the performance
of a reuser.

The domain analysis results in a model of the application domain. As with the approach

proposed by Prieto-Dian, this approach identifies and collects reusable domain knowledge.

2-3

However, Arango's approach also compares the performance of the reuse-based task to a

desired performance level. The domain analysis works to improve the reuse-based task until

it reaches the desired performance. Therefore, Arango modeled the reuser as a learning

system where improvements to performance correspond to subsequent iterations of domain

analysis.

McCain (25) proposed a domain analysis approach consisting of two separate tasks.

The first task, application domain analysis, identifies a hierarchy of components and their

associations. Application domain analysis is basically the same as other domain analysis

approaches studied. This task has three activities: define reusable entities, define reusable

abstractions, and perform classification of reusable abstractions. The second task, com-

ponent domain analysis, defines the individual component behaviors and requirements.

This task has four activities to define component interfaces, constraints, algorithms, and

customization requirements. McCain's approach is different from other domain analysis

approaches by his explicit inclusion of a component domain analysis task.

Kang and others (18) proposed a domain analysis approach called Feature-Oriented

Domain Analysis (FODA). The approach identifies prominent features (similarities) and

distinctive features (differences) of software systems within an application domain. The

features also define mandatory, optional, and alternative characteristics of software systems

in the domain. Unlike the other domain analysis approaches we have summarized, the re-

searchers described FODA in sufficient detail to use on large domain analysis projects (ones

with several domain analysts). However, this depth of detail can restrict the applicability

of the approach.

The Domain Analysis Working Group Report (37) described two domain analysis

approaches. The first approach lists the common steps found in other domain analysis

approaches:

1. Define Domain Analysis

2. Identify and scope the domain

3. Select a representative set of systems to study

4. Gather inputs for the domain analysis

5. Perform feature analysis at the requirements level

2-4

6. Analyze separability, selectability, and trade-offs of features

7. Select an implementation technology

8. Implement and validate products in phames

9. Deliver products of domain analysis

However, they give no real explanation of how a domain analyst accomplishes these steps.

They give more detail for the second approach:

1. Acquire knowledge

2. Perform high-level functional analysis (top-down)

3. Identify objects and operators (bottom-up)

4. Define domain models and architecture

A different view of domain analysis was proposed by Iscoe (15). He focused on the

results of the domain analysis rather than a specific approach or the inputs to the domain

analysis. He suggested the problem was "to create a model for domain knowledge that

is general enough to be instantiated in several domains" (14:299). His approach involved

developing levels of "meta-models" that a domain analyst uses to capture the information

of a particular application domain. Models consist of objects and their attributes, along

with the operations performed upon those objects. This approach had two distinct charac-

teristics: (1) attributes and operations are defined in terms of their underlying scales and

(2) object classes use multiple inheritance. Iscoe's approach to domain analysis is known

as domain modeling.

Domain modeling is a subset of domain analysis. It is a formal approach to capturing

domain knowledge into a specific form that results in a defined knowledge structure called a

domain model. We define domain modeling as the process of organizing and encapsulat-

ing information within an application domain into a predefined knowledge structure. The

structure for a domain model depends on the specific application domain being modeled

as well as the domain analysis approach applied.

Prieto-Diaz suggested that the structure of domain models "range in level of com-

plexity and expressive power from a simple domain taxonomy to functional models to

domain languages" (31:51-52). He defines a domain language as "a collection of rules that

relate objects and functions and which can be made explicit and encapsulated in a formal

2-5

language and further used as a specification language for the construction of systems in

that domain" (30:66). Arango suggested that a domain language documents a "shared

paradigm [that] is a precondition for domain analysis" (3:82).

Neighbors developed a domain modeling approach with his DRACO system (27),

one of the first systems to specifically employ domain languages and domain models. His

approach involved a hierarchy of domains consisting of different levels of abstraction. Do-

mains at the highest level of abstraction are called application domains. Domains at the

lowest level of abstraction model conventional programming languages and are called ex-

ecutable domains. Those domains in between are called modeling domains. Application

domains span several modeling domains. A domain language defines the external syntax of

an application domain. The domain language semantics are written in Backus-Naur form

and augmented with control mechanisms.

The domain analysis approaches we have described above are a sample of those

approaches published. The software engineer has many options for using or modifying

an existing approach. Wartik and Prieto-Dfaz (40) presented a strategy for comparing

different domain analysis approaches that included the following criteria:

"* definition of "domain"

"* determination of problems in the domain

"• permanence of domain analysis results

"* relation to the software development process

"* focus of analysis

"* paradigm of problem space models

"* purpose and nature of domain models

"* approach to reuse

"* primary product of domain development

Software developers can use these criteria to choose a domain analysis approach that meets

their objectives and is within their current resources.

2-6

2.3 Systematic Reuse

Wartik and Prieto-Diaz also described three categories of reuse: ad hoc, opportunis-

tic, and systematic (39). Ad hoc reuse is reuse without any formal reuse method. Op-

portunistic reuse is a software development process with methods to identify the types of

reusable components, when to use them, and where they might be found. Systematic reuse

is a software development process with methods to define and construct reusable compo-

nents. They suggested that a software development process could not realize systematic

reuse without including the role of domain analysis.

The success of knowledge-based software engineering systems, such as application

composition systems, depends on the practice of systematic reuse. Prieto-Daz suggested

that domain analysis could realize systematic reuse by successfully "deriving common

architectures, generic models or specialized languages that substantially leverage the soft-

ware development process in a specific problem area" (31:47). He provided an example

of how domain analysis might fit into the software development process (shown in Fig-

ure 2.2). Prieto-Diaz claimed that this concept could support several methods of software

DGMEM

..,- .,........ •...........
-• -• • m •<~ ~,-.......... i..

.. • IN •
"- II I.

......... ""----

S... :

Figure 2.2 Domain Analysis and Software Development (31:52).

development other than the waterfall model. He called this concept a reuse infrastruc-

ture and stated:

2-7

development other than the waterfall model. He called this concept a reuse infrastruc-

ture and stated:

Domain models, in a variety of forms, support (i.e., control) the different phases
of software development. Reusable resources are selected and integrated in the
new system. Reuse data is then collected and feedback to domain analysis for
refining the models and for updating the library. As developed systems become
existing systems they are also used to refine the reuse infrastructure (31:52).

Neighbor's DRACO system generates software systems from abstract specifications

using its hierarchy of domains. A specification begins in an application domain and gets

refined by the system through modeling domains until it can be implemented using an

execution domain containing reusable components.

Reusable components, like those in DRACO's execution domains, are very important

to systematic reuse. The reusable components must be constructed using some consistent

structure called a software architecture. Software architectures define a consistent compo-

nent structure and also define how to compose applications using a domain's components.

Researchers at the Software Engineering Institute have studied systematic reuse and have

developed a software architecture called the Object Connection Update (OCU) model (19).

Figure 2.3 shows a subsystem in the OCU architecture. Applications are composed of at

Figure 2.3 An OCU Subsystem (19:18).

least one subsystem under the control of an application executive. Subsystems consist of

imports, exports, a controller, and objects. Objects consist of inputs, outputs, and update

functions. Gool (10) summarizes the OCU model as well as several other documented

software architectures.

2-8

2.4 Application Composition Systems

Both domain analysis and systematic reuse play important roles in knowledge-based

software engineering systems, especially in the class of application composition systems.

There are several application composition systems in use today. Anderson (2), Ran-

dour (32), and Weide (40) developed the initial version of Architect, which is an application

composition system that implements the OCU software architecture. In this system, do-

main information is captured in reusable objects at the specification level. Along with

these reusable objects is information specifying a domain-specific language (DSL) and vi-

sualization specification language (VSL). An Application Specialist (the person creating

the software system, called an application) composes applications by either entering a tex-

tual specification using the DSL or by visually manipulating icons specified by the VSL.

The Architect system is undergoing further study at the AFIT (see research by Gool (10),

Warner (38), Cossentine (7), Welgan (41), and Waggoner (37)).

The Lockheed Software Technology Center, under roi-tract with the United States

Air Force, prototyped an application composition system (17). This syst.em, called AP-

TAS, "automatically synthesizes executable code from high-level tracking system specifi-

cations" (17:1). APTAS generates applications through the support of its Tracking Tax-

onomy and Coding Knowledge Base. The system uses a software architecture enforced by

the knowledge base structure; however, there is no method defined to store information

(on existing or new domains) into its knowledge base.

Several other application composition systems exist. Some of these include the

Kestrel Interactive Development System (KIDS) developed at Kestral Institute (35), the

Khoros system developed at the University of New Mexico (33), and the Intelligent Design

Aid (IDeA system) developed at the University of Illinois (23).

2.5 Summary

Software reuse has come a long way from ad hoc reuse of low-level code. The reuse

of high-level abstractions capturing domain knowledge has become a reality through tech-

nologies like domain analysis and domain modeling. Software architectures, combined

2-9

with domain analysis, have made it possible for researchers to build software development

systems that practice systematic reuse of both low-level code and high-level abstractions.

Application composition systems, like Architect and APTAS, have shown that the users

themselves can develop their own software systems in a familiar language and environment.

Ongoing research in domain analysis and systematic reuse will provide more insight in the

development of more operational application composition systems and modeling more ap-

plication domains. These advances promise to improve the software development process

drastically.

2-10

III. Knowledge Base Population Methodology

3.1 Introduction

Many researchers have envisioned software development evolving from the art of

hand-writing code to the engineering discipline of combining and specializing reusable

components. One such researcher, Michael Lowry (22:630), envisioned Knowledge-Based

Software Engineering environments that automate software reuse using domain knowledge

captured through domain analysis. The KBSE research group at AFIT is developing formal

methods to implement the automated reuse that Lowry envisioned in the above paragraph.

The group's work is based on several of Lowry's premises. This thesis is part of the

group's work, and it is focused primarily on how to capture the reusable components that

Lowry described into an automated software development system (i.e., how to populate

the system's knowledge base).

This chapter proposes a general process that can be tailored to populate the knowl-

edge bases of a particular class of software development systems. Section 3.2 defines the

particular class of software development systems. Section 3.3 presents our view of domain

models and their corresponding knowledge base representations. Section 3.4 describes the

domain analysis methods that we found helpful in developing our process. We use these

methods in Section 3.5, along with our system definition and domain model view, to de-

velop a general process to populate a system's knowledge base. Finally, in Section 3.6,

we support the development of a "general" process and define several constraints to its

implementation.

3.2 Generic Domain-Oriented Application Composition System

We developed a knowledge base population process for a specific class of software de-

velopment systems. There are several characteristics that distinguish this class of systems.

Each system has a knowledge base and a process to compose applications. The knowl-

edge base stores reusable components. Applications are specified using these components.

Users can modify, save, and maintain applications through the composition process. Also

'This chapter was co-written with Russell Warner and also appears in (38).

3-1

through the composition process, users can simulate the execution of application (before

code is created), translate them to some external form (i.e., synthesize code), and execute

them outside the system. These characteristics, including the ability to synthesize exe-

cutable code, describe the class of application composition systems. However, our class

of systems has a knowledge base that must be organized into application domains in an

object-oriented fashion. Therefore, we refer to this class of systems as Domain-Oriented

Application Composition Systems (DOACS).

There are several advantages to this type of system. The most important advan-

tage is systematic reuse. Reuse is not limited to the code level, but occurs at all levels,

primarily at the specification level. Maintenance also occurs at the specification level in-

stead of at the more difficult code level. The application composition process, with its

ability to simulate specification behaviors, provides an ideal environment to develop rapid

prototypes. This type of system can also provide the powerful capability of creating sys-

tems within a graphical environment. The user works with the components and does not

have to possess expert knowledge of the domain (e.g., specific algorithms). A user does

not need traditional programming knowledge to create new applications, nor to maintain

existing applications, because the system automatically generates applications from their

specifications. Users can possibly choose between different hardware platforms and pro-

gramming languages when generating code. Finally, these systems could automate the

"housekeeping" chores (e.g., configuration management) so users can concentrate on the

more important task of application specification.

It is important to make the distinction between domain-oriented and domain-specific

application composition systems. A domain-specific system can be used to compose appli-

cations in only one domain and new domains cannot be added. A domain-oriented system

can be used to compose applications in any domain implemented in that system and more

domains can be added. While there are similarities between these two types of systems, the

fact that domain-specific systems contain only one domain greatly simplifies the creation of

the system and, of course, nullifies the problem of knowledge base population since the do-

main information is integrated into the system when it is built. Although domain-specific

systems are limited to one domain, the creators of the system are able to take advantage

3-2

of the features of that particular domain when designing the system (e.g., the system can

be custom tailored around the architecture that best fits that particular domain). Because

of this, domain-specific systems have an advantage over domain-oriented systems in ease

of composition and capabilities in that particular domain. However, it is not practical

to build domain-specific systems for every application domain. Due to their modularity,

it is easier to update domain-oriented systems with new software engineering techniques.

Also, only one system has to be updated to take advantage of any new technique for many

domains as opposed to updating several domain-specific systems (it would be a significant

effort to update each system separately).

Figure 3.1 contains the major characteristics of our generic DOACS (G-DOACS). We

Populm• Knowkdge Btw Knowkdp Box C=VCompse Appl icatios

Figure 3.1 Gennir Domain-Oriented Application Composition System (G-DOACS)

have used rounded boxes to represent processes and subprocesses (e.g., Compose Appli-

cations and Create), regular boxes to represent physical structures (e.g., Knowledge

Base), and ovals to represent the roles of the people involved. Notice that we have also

included another important characteristic to the G-DOACS definition, the addition of a

Populate Knowledge Base process that performs the actual knowledge base population.

3-3

3.2.1 Compose Applications. An Application Specialist uses the Compose

Applications process to create, modify, and validate (through simulation) software ap-

plications. The application can then be transformed into executable code. The specific

methods to accomplish this process may vary from one DOACS to another.

In general, the Application Specialist creates an application by choosing compo-

nents from a domain-specific component library, specifies how those components connect

together, and declares any necessary processing information. The Application Specialist

does not add any new functionality (i.e., no new code), but does specify a component's

particular functionality by setting various component attributes. The ability to specify

components from several domains within a single application is not a requirement for our

class of systems, but this is a desired capability.

Rapid prototyping can be easily accomplished through the simulation capability. The

Application Specialist can quickly compose an application and simulate its execution. If

the behavior meets the requirements, then the Application Specialist can continue to refine

the application; if not, then the Application Specialist can modify the application or throw

it away and start over.

We use the term "simulating" rather than "running" because no code has been

generated. The system uses the current application specification and any selected reusable

components to simulate the behavior that would be expected if code had been generated

and executed. Through simulation, the Application Specialist can validate the application's

behavior and modify the specification until it meets the desired behavior.

After the application is validated, the Application Specialist can transform it into

an executable form (i.e., synthesize code) for a particular target platform. At any stage

of application development, the Application Specialist can save the current application

specification. This environment also supports application maintenance by allowing the

Application Specialist to load and then modify the application.

3.2.2 Knowledge Base. Although specific knowledge bases vary, every DOACS

knowledge base contains at least three distinct types of information: applications, reusable

components, and domain model representations.

3-4

Applications are compositions of the reusable components, along with composi-

tion information (e.g., how they are connected, execution order). Therefore, applications

contain either links to the reusable components they employ or copies of each reusable

component. If links are maintained, then the attribute values that have been changed by

the Application Specialist are also saved.

Reusable components (we will often refer to them as just components) are the

objects that are connected together to build applications. Reusable components are ei-

ther primitives or reusable applications. Primitives are independent objects that capture

the behavior and attributes of objects and classes specified during domain analysis and

identified in the domain model. Reusable applications are those applications (or parts

of applications) identified for potential reuse within future applications. They are some-

how processed to make them available to the Application Specialist for composition into

applications just like the primitives.

Domain model representations are formal structures that organize the reusable

components and other domain-specific information (such as data types, semantic rules, and

perhaps even specific architecture information) within an application domain. The types

of information in a particular representation depend primarily on the specific application

domain and on the chosen approach to domain analysis. We discuss our view of domain

models and their representations in more detail in Section 3.3.

3.2.3 Populate Knowledge Base. The Populate Knowledge Base process is

the focus of our research and is the topic of the rest of this chapter. Briefly, knowledge

base population is a process in which the Domain Engineer captures domain information

as high-level abstractions, and the Software Engineer represents these abstractions in a

form that is stored directly in a particular system's knowledge base.

In our general process, population begins by selecting an object-oriented Domain

Analysis approach. The Domain Engineer models a particular application domain using

the domain analysis approach chosen. The result of the domain analysis is a domain model

and individual component abstractions (i.e., component behavior definitions).

3-5

The Software Engineer uses the domain model and the individual component ab-

stractions to create the formal structure of that domain in the knowledge base. We call

this construction of a domain model representation the Domain Implementation. The

domain model representation is a particular instantiation of a domain model and the indi-

vidual component abstractions for a specific DOACS knowledge base. Once instantiated,

the Software Engineer adds the domain model representation to the knowledge base. The

Application Specialist can then access any new information when composing applications

in that domain.

We borrowed the term reuse infrastructure from Arango (3) and Prieto-Diaz (31)

to refer to a domain model representation. We developed our process to keep the domain

model as independent of the particular DOACS and its knowledge base structure as pos-

sible. This independence delays (for as long as possible) the addition of any particular

system constraints to the analysis process. The view of a domain model being different

from its reuse infrastructure is important to our development of a general knowledge base

population process.

3.3 Domain Models and Reuse Infrastructures

The terms domain model and reuse infrastructure are central to our research and,

in our opinion, are ill-defined in the current literature where they take on many different

meanings. In this section, we define the meanings of these two terms with respect to our

research.

Many researchers have viewed the results of a domain analysis as a set of reusable

software components and composition rules that capture and implement the semantics of

applications within the domain. Given this interpretation, however, Domain Engineers

must know the particular knowledge base structure before completing their domain analy-

sis. Domain analysis becomes a task of finding, identifying, organizing, and implementing

reusable components. Domain Engineers become the people responsible for populating the

knowledge base and collecting the results of their domain analysis within the knowledge

base structure itself.

3-6

This approach can lead to quick and efficient domain implementations, but can also

lead to several problems because of inherent limitations in any knowledge base. Because

all domain information cannot be stored in a particular knowledge base, it is difficult to

reuse the domain analysis results to populate the knowledge base of another DOACS.

Also, problems can occur when identifying or changing the design of the domain model or

making other changes as new information is discovered (e.g., better domain implementation

methods), because some domain information may have been lost through design decisions

when populating the knowledge base. In addition, if the Domain Engineer views a domain

through the structure of a particular knowledge base, it will influence the interpretation

of domain knowledge and may result in missed or incorrect domain encapsulation. This

problem is similar to the difficulty in identifying seemingly simple solutions to a problem

when viewing it through the wrong paradigm.

For these reasons, among others, we make a distinction between the results of the

domain analysis (domain model and component abstractions) and the implementation of

the domain (or reuse infrastructure) in the knowledge base. Therefore, although many

researchers have assumed the domain model and its reuse infrastructure (domain model

representation) are one and the same, we agree with Arango:

Models of domains and reuse infrastructure should be treated as separate en-
tities, conceptually and practically. Models of domains capture the results of
the learning process in domain analysis and support the application of learning
techniques. Reuse infrastructures are specified to support the efficient reuse of
the information from the model in particular environments (3:88).

This division between domain analysis and domain implementation that we are

proposing is similar to a division in compilers. Compiler theory makes a distinction between

the intermediate code generated by the front end (analogous to our Domain Analysis) and

the machine code generated by the back end (analogous to our Domain Implementation).

The front end of the compiler includes those portions of the compiler "that depend pri-

marily on the source language and are largely independent of the target machine ... [while]

the back end includes those portions of the compiler that depend on the target machine,

and generally, these portions do not depend on the source language, just the intermediate

language" (1:20). The front end can be created once for a language, and then different back

3-7

ends can be combined with it to create compilers for different machines. In our generic

methodology, we propose that domain analysis and domain implementation are analogous

to the front and back ends of a compiler. The results of one domain analysis can be used

to populate different DOACSs.

3.3.1 Domain Model. The software engineering community has many different

views on what constitutes a domain model. In G-DOACS, a domain model is a structure

that captures an application domain's individual components (including their attributes

and operations), relationships between components, and other related information (such

as shared data types, global operations, composition rules, and architecture information).

Prieto-Diaz suggested that the the purest form for a domain model would be a domain

language (31:52) that captures all the information about a domain listed above. The

syntax of such a language would capture the types of components (with their attributes)

and the ways they can be combined, while the semantics would capture the the behaviors

of component combinations.

For our process, we chose not to include the individual component behaviors (se-

mantics) as part of the domain model. We separated the component behaviors from the

domain model because defining behaviors is often the most difficult task during domain

analysis. Also, users can compose applications with a well-defined domain model imple-

mentation but with only partially defined (and implemented) component behaviors. This

allows a Domain Engineer to quickly capture a small "core" of domain knowledge (the do-

main model plus a few of the component behaviors) that, once implemented, provides the

Application Specialist the capability to compose simple applications before many of the

component behaviors have been defined. Under our definition, the domain model contains

only the information that fully describes the syntax of an application domain; individual

component behaviors are defined and implemented separately.

In this chapter and those that follow, we describe two instances of the domain model.

The first is the domain model created during the domain analysis process (as described in

the preceding paragraph); the second is the implementation of the domain model in the

3-8

knowledge base. The instance we are identifying with the term domain model should be

clear from the context.

3.3.2 Reuse Infrastructure. As stated previously, the results of the domain analy-

sis should be independent of any particular DOACS. So ideally the domain analysis outputs

a domain model and component abstractions without constraints to their usefulness to any

particular DOACS. This approach follows the established software engineering practice of

pushing design decisions down to the lowest possible level. If the domain analysis is done

correctly, the domain model and component abstractions can be evolved over time without

the need to reanalyze the whole domain. The domain analysis results can also be used to

populate the knowledge base of any DOACS (i.e., the results are reusable 2).

Since the domain analysis results are derived independent of the knowledge base

structure, the system cannot use them to generate applications. Therefore, the Software

Engineer must organize and inr ,)ement the domain model and component abstractions into

the correct knowledge base representation for some particular DOACS. We call this instan-

tiation of the dowmain analysis results the reuse infrastructure. The reuse infrastructure

implements the information captured in the domain model and component abstractions in

the form required by the structure of a particular knowledge base. Traditional software

engineering methods apply to the development of any reuse infrastructure.

Separating the reuse infrastructure from the domain analysis results allows us to

develop our knowledge base population process without introducing constraints too early

in the process. Before presenting our process, we will discuss several theories that were

helpful in our research.

3.4 Domain Analysis Research

In Chapter II, we summarized the current literature in the field of domain analysis

and discussed the relation between this field and our research in knowledge base population.

This section summarizes some of the contributions of two recognized researchers in the

2Methods to capture domain information in an object-oriented database feeding the knowledge bases of
several DOACS are addressed by Cecil and MFlenkamp (6).

3-9

field: Priet3-Diaz and Arango. Prieto-Diaz (30) proposed a functional model of a domain

analysis process while Arango (3) explored the domain analysis process in a formal software

reuse system. Our process is built upon many of their contributions.

3.4.1 Prieto-Diaz's Research. According to Prieto-Diaz (30), domain analysis

captures the "essential functionality" of components, which assists the application devel-

oper. He proposed the data flow diagram in Figure 3.2 with three activities that are

involved with domain analysis: prepare domain information, analyze domain, and pro-

duce reusable workproducts. These three activities comprise the task of knowledge base

population.

Iea dwait

Waem""

Figure 3.2 Producing Reusable Workproducts (30:67).

The prepare domain information activity produces the requirements of the domain

analysis. This activity includes bounding the applicaticn domain, identifying the sources

f-T domain knowledge, selecting a specific domain analysis approach, and defining the

expected results.

The analyze domain activity uses these requirements to produce collections of do-

main abstractions including the domain model, domain frames, a domain taxonomy, and

a domain language. This activity is the domain analysis theory proposed by Prieto-Dfaz

- we previously presented the details of the analyze domain activity with the data flow

diagram in Figure 2.1. The domain abstractions capture the behavior of objects within

3-10

the domain, identify their relationships, and model the structure of these relationships.

Prieto-Diaz suggested that the ideal result of domain analysis is the domain language.

The produce reusable workproducts activity takes the domain abstractions and pro-

duces a set of reusable components. The components implement the objects and relation-

ships identified in the domain model and used in the domain language.

Prieto-Diaz proposed a functional model that successfully identifies the relationship

between domain analysis and the production of a reusable infrastructure. It also suc-

cessfully defines several outputs involved in the process; however, it does not sufficiently

describe the requirements of each activity. For instance, there is nothing that constrains

the structure of the reusable components. Systematic reuse cannot be realized without

such constraints. His model does not explicitly capture the importance of feedback and

iteration in the domain analysis process, nor does it identify the role of the knowledge base

in separating the reuse infrastructure from the domain model.

3.4.2 Arango's Research. Arango (3) outlined a "domain engineering framework"

based on the concepts of software reuse. His framework serves as a structure for synthe-

sizing a tailored domain analysis process. Arango suggested his framework has general

application because reusers are modeled as learning systems.

Figure 3.3 describes the learning component using boxes from the Structured Analysis

and Design Technique. The component consists of three activities and is defined by a set

of state variables (3:84):

"* Exp: expertise in the domain

"* ReuseLog: feedback from the reuse task

"* RI: reuse infrastructure

"* TL: technologies to support the representation and evolution of the domain model

"* MoD: domain model

"* Lc: method to increase coverage

"* Le: method to improve efficiency

3-11

ama

Le

DEVELOP
MOOSO

REUSE

INRASTRUCTURE
SA' 2

in moo m
"

SIMAPLEMENT
INFRASTRUCTURE

Pawn 3

Log

Figure 3.3 Develop Reuse Infrastructure (3:85).

* MoT: model of the reuse task

The develop MoD activity represents the actual domain analysis and results in a

domain model. Arango made a clear distinction between the domain model and the reuse

infrastructure. He stated that the distinction is analogous to the distinction between

"representations for systems specifications and programming languages for systems imple-

mentations" (3:82). This distinction allows the domain model to be independent from the

MoT.

The other two activities use the current state of the domain model to organize and

implement a reuse infrastructure. The particular organization and implementation de-

pend heavily upon the particular MoT. Traditional software development procedures are

applicable during these two activities.

Arango's learning component is very similar to the functional model proposed by

Prieto-Diaz. It separates the creation of a domain model from the development of the reuse

infrastructure. Arango successfully identified the various traits involved in the development

3-12

of a reuse infrastructure. He also explicitly indicated the roles of feedback and iteration.

However, his state variables were too ambiguous. He did not sufficiently describe the model

of the reuse task or the role of the knowledge base, which are essential in developing the

reuse infrastructure. There was also no clear distinction between the results of infrastruc-

ture specification and those of infrastructure implementation. Prieto-Diaz had combined

these two activities into his produce reusable workproducts, but Arango seemed to think

there should be some distinction. Our research combines these two processes into a single

knowledge base population process. We attempt to clarify all traits involved in knowledge

base population without adding additional constraints to the process.

3.5 Knowledge Base Population Process

We propose a five-step process to knowledge base population that explicitly identi-

fies the roles of the Domain and Software Engineers, incorporates feedback, and iteratively

captures a domain (in stages). Each step has defined inputs, outputs, methods, and con-

straints. Our process is shown in Figure 3.4, using boxes from the Structured Analysis and

Design Technique. The methods (bottom arrows) driving each activity or step must be

selected prior to performing the activity. The constraints (top arrows) show the require-

ments that drive each activity. The inputs and outputs (left and right arrows, respectively)

show the domain information as it is captured and passed from activity to activity.

Activities one and two compose our domain analysis process and result in a domain

model and component abstractions. As discussed in previous sections, this domain analysis

is independent of the particular DOACS. Activities three and four comprise our domain

implementation process that results in a reuse infrastructure and, as can be seen from

the constraints, that is very dependent on the particular DOACS. This division between

domain analysis and domain implementation is such that one domain analysis can feed

multiple domain implementations for different DOACS. Activity five provides an evaluation

and feedback mechanism to iteratively improve the domain model, component abstractions,

and the reuse infrastructure. The remainder of this section defines each activity and all

its associated traits.

3-13

SNow" am ampM T-O&SAM

Figur sw e 3.4*f Knowedg BsPopuato

WML OEO EEOM•

f odel req uirements

strngts adeakesss Figthe apprachKnoldg onate characteisto fthnatcua o

main.t b reaalyed. Wle reognizeta faode. efrstsc asthep Dmin Englaine ter' familarit

bsofaDASwith cetioeigapprartches, dmainaigemntsoerallngoalsmaind thde. Avdoaiailt ofde-

sourcenstrwis a uso pla anfimotntd roleunchoing ah specificdoanmeig approach.n weldfnedth

obetoria oeinte moeuirmngtprahsoldbsufcet.ic u ehoooyrqie

The k oan nieepirwt rdfntoshol prsentedt inCather eciee domain modeling toroc baed an type

ofindomain analyid. tha resulognize domain modlwthr some fraithed structurgie. rsfmirt

3-14

consistency and completeness 4 of the resulting domain model, but puts no restrictions on

the form of this model (other than object-oriented). The Domain Engineer is the one who

will have to use the approach to create and update the domain model. Therefore, the

approach must be thoroughly understood. Also, the approach should take advantage of

any available automated domain analysis/modeling tools to aid in capturing the domain.

Such tools could improve performance and could aid in maintaining the domain model's

consistency and completeness (information on one such tool can be found in Crowley's

research (8)). We expect that these tools will be tied together after they (and DOACS)

become more established (effectively automating much of the role of the Software Engi-

neer).

The modeling requirements come from both the domain modeling approach cho-

sen as well as the fact that domain analysis must be accomplished using object-oriented

techniques. The minimum modeling requirement consists of a formal structure that en-

capsulates all the information represented in the domain model. The structure is similar

to a meta-model structure (proposed by Iscoe (15)) and should be in some object-oriented

form.

Once the domain modeling approach and modeling requirements have been defined,

the Domain Engineer can begin creating the domain model. The domain model is trans-

formed from a simple hierarchy of abstraction identifiers to a formal structure of captured

domain semantics (which ideally leads to a domain-specific language). As the domain

model evolves, the Software Engineer can begin applying the constraints of a knowledge

base for a particular DOACS to construct a reuse infrastructure (i.e., instantiate the do-

main model). However, before discussing the domain implementation, we must address

the task of defining individual component abstractions.

3.5.2 Abstract Component Behavior. After a structure has been created contain-

ing components in the domain, the behavior of the individual components must be defined.

McCain refers to this process as "component domain analysis" (25:73). The abstraction

"4 By completeness, we do not mean that the domain model has to capture the whole domain, but rather
that the parts of the domain that it does capture are completely captured within the scope of the domain
analysis approach.

3-15

technique chosen by the Domain Engineer must be consistent with the modeling approach

used in the Create/Evolve Domain Model activity (ideally, they both should be part of

an integrated domain analysis approach). The results of the abstraction technique should

be in a form that the Software Engineer understands and can implement. For example, it

is possible to create Z schemas that cannot be implemented on a computer system. The

distinct features of the domain under analysis should also play a role in which abstraction

technique the Domain Engineer chooses. However, although different abstraction tech-

niques may he used for different domains, using the same technique within a domain is

required.

One of the most important aspects of the component abstraction is the interface

specification. Although object interfaces could have been partially defined during the

previous activity (if not completely defined, depending on the modeling approach chosen),

each component abstraction must have interfaces that support consistent relationships

between other component abstractions. The Domain Engineer must keep in mind that this

whole process is based on an object-oriented methodology and that the final result will

be objects that can be connected together. Incorrect or inconsistent component interfaces

will cause severe problems when the Software Engineer tries to implement the abstractions

and also when the Application Specialist attempts to compose applications.

Another aspect of each component abstraction is the effect of certain component at-

tribute values. Attributes contain data that represents characteristics of an object (19:20).

These characteristics may have a large impact on the behavior of a particular component.

The Domain Engineer must identify these impacts during this activity. For example, a

component that converts a real number to an integer may have an attribute that spec-

ifies whether that component will do the conversion by rounding to the nearest integer,

truncating, or rounding up to the next integer. One useful feature of a DOACS is the

ability for the Application Specialist to change these component attributes and "tailor"

the component for a specific application. However, components can have attributes that

should not be changed by the Application Specialist (for example, attributes that reflect

the internal state of the component). These internal attributes should also be identified

during this activity.

3-16

It is expected that the Domain Engineer may identify better ways to model the do-

main at this stage of the process. For example, at this point, the Domain Engineer may

choose to combine objects or classes (generalization), or split an object or class (special-

ization). These improvements are acceptable (and even desirable). As stated before, our

process is iterative. Component abstractions are evaluated (by the Evaluate Domain De-

velopment activity), and the Domain Engineer is notified of any problems. Our study of

domain analysis revealed that the best domain model is the one that has evolved over time

(i.e., it is difficult to come up with the best model on the first iteration).

We recognize that the Domain and Software Engineers may choose to merge this

activity with the Implement Reusable Components activity by using a DOACS-specific

method to define and implement individual component behaviors. This could save time

and effort during the domain analysis, but it has its drawbacks. When system require-

ments and implementation requirements constrain the definition of individual component

behaviors, biases could easily enter into the component definitions (e.g., implementation

details often "muddy the water" of a "pure" domain analysis). Any bias introduced at

this early stage may cause difficulties as the domain implementation evolves. Also, ab-

stracting component behaviors in this way may make it difficult (or impossible) to reuse

the abstracted components to populate another DOACS.

3.5.3 Design Reuse Infrastructure. The domain model is a structure (much

like the syntax and semantics of a grammar) that captures the individual components,

relationships between components, and other related information in an application domain.

The Software Engineer must now organize the information captured in the domain model

into a form that can be stored in the knowledge base of the particular DOACS. The

organized abstractions become the domain's reuse infrastructure design. The infrastructure

design is similar to Arango's reuse infrastructure specification that acts as "an architecture

for reusable information" (3:82). In designing the reuse infrastructure, current software

engineering methods should be used; however, these methods must fit into the object-

oriented paradigm. Also, the Software Engineer must understand and follow any other

design requirements (e.g., organization-specific design standards).

3-17

The implementation of this process is very system-specific; however, the results of

this activity will usually form, as a minimum, an abstract syntax tree with each node rep-

resenting some abstraction and each leaf representing a component implementation. More

sophisticated DOACS will require more sophisticated results like implemented domain-

specific languages, domain semantics (e.g., a domain rule that component A must follow

component B), domain-specific software architectures, and methods for defining how the

components are presented to the Application Specialist during the composition process.

3.5.4 Implement Reusable Components. Now that the reuse infrastructure has

been designed and the component behaviors have been defined, the individual components

must be implemented (transformed into the required "executable" form). Component

implementation is a translation of each component from its abstract definition into a form

representable in the knowledge base and executable by the DOACS.

The Software Engineer implements each abstraction organized in the domain infras-

tructure design. The implemented abstractions become part of the reuse infrastructure

implementation and, when all of them are done, domain implementation is complete. Be-

fore implementing the components, the specific software development tools and the imple-

mentation requirements must be identified.

The selection of software development tools will depend on the software implemen-

tation languages accepted by the DOACS. The Software Engineer should use whatever

tools are available to implement the components. Commercial compilers and software de-

velopment environments can provide the necessary utilities to perform reuse infrastructure

implementation.

The implementation requirements constraint indicates the constraints imposed by

the DOACS, most of which result from the requirements of its knowledge base. These con-

straints must include a formal description of the software architectures supported by the

DOACS and the specific procedures for representing component implementations within

the knowledge base. The implementation requirements should also identify different meth-

ods to model the component abstractions. For example, a stack data type can be imple-

mented as an array or list with various advantages to each of these implementations. Part

3-18

of the implementation requirements should detail the procedures for selecting the desired

implementation method for different abstractions.

A priority list of the order to implement the components may also be included in the

implementation requirements. The Application Specialists may zequire some components

immediately, while other components may not be needed until well in the future. Using

priorities, the Software Engineer could implement components in order of their importance

to the Application Specialist. This allows the DOACS to support application composition

before complete domain implementation is finished.

3.5.5 Evaluate Domain Development. In this activity, the Software and Domain

Engineers evaluate the outputs of the previous activities. This activity covers a broader

scope than the others because, while the others are focused on one area of domain analy-

sis/implementation, this activity has relevance to the entire knowledge base process from

start to finish.

The results of each of the other four activities should be evaluated as they are gener-

ated, both individually and along with results from previously completed activities. Also,

when all the results are completed, they should again be evaluated to ensure consistency

and completeness. This activity should trigger one or more of the previous activities when

errors or better ways to model/implement the domain are discovered. Each activity could

include their own evaluations as part of their normal execution, but we have made the

evaluation a separate activity to provide a way to evaluate the results of all the activities

in reference to one another.

Although we have placed this activity at the end of our process, it is involved at

each step of the knowledge base population process. As the domain model and knowledge

base evolve, this activity becomes more important in maintaining the integrity of the

applications they generate.

An input to this activity that is not specifically shown on Figure 3.4, but is worthy

of mention, is from the Application Specialist. As the Application Specialist composes

applications, several problems may be identified (such as missing components, errors in

components, or problems with component interfaces). The Domain Engineer then evaluates

3-19

the problems and makes any necessary changes to the domain model or reuse infrastructure.

Another input from the Application Specialist is the identification of applications that

should be incorporated into the knowledge base as primitive components. These reusable

applications are discussed in the next section.

3.5.6 Reusable Applications. Along with the components identified during the

domain analysis, the Application Specialist may want to use an existing application (or

part of one) as a component in a new application. We call this reused application a

reusable application (although all applications are reused in the sense that they can

be reloaded and modified). When the Application Specialist is choosing components to

use in composing an application, these reusable applications should be included in the list

of choices. It is possible that a DOACS could implement reusable applications without

any special processing; however, in general, we expect that these applications will need to

be identified for reuse and somehow "processed" by the Domain and Software Engineers.

This processing is completely dependent on the specific DOACS, and there could even be

different methods for accomplishing this within the same DOACS.

The creation of a reusable application may be simple or complex, depending on the

specific situation and the capabilities of the system. Primitive application creation could

consist of stripping off desired data "sources" and "sinks" (components that generate or

consume data that we now want to leave off the application) and identifying the interface

to the reusable application that remains after these components are removed. If the spe-

cific DOACS does not have the capability of storing and using a reusable application like

this, then the Software Engineer may have to somehow combine all the behaviors of the

components of this application into this new component in the same manner as those iden-

tified in the domain analysis. Also, depending on the specific DOACS, it may be required

that this new primitive application be added into the reuse infrastructure design.

Along with making the reusable application available as a new component to the

Application Specialist, the Domain Engineer should consider adding it to the domain

model (in the Create/Evolve Domain Model activity). If the reusable application is added,

then its behavior should be captured in the Abstract Component Behavior activity and

3-20

consideration given to implementing it as a single component (rather than a collection of

components).

3.6 General Process Support and Constraints

There are many reasons for having a general knowledge base population process. One

reason is to provide a framework to use when developing tools and utilities that apply to

populating many knowledge bases. Is there justification for developing a general process?

How "general" is this process? This section is our attempt to support our development of

a "general" knowledge base population process.

We have illustrated a possible knowledge base population process. We attempted

to clarify the process by identifying the methods and constraints for each activity; they

change depending on the specific application domain and the specific DOACS used to

develop applications. This versatility, tying each of these traits to the characteristics of the

domain or system, adds justification to the general applicability of the process. Although

the domain model resulting from the domain analysis is independent of the knowledge base

constraints, the model's structure and the domain analysis method used to create it can

differ for each domain. This characteristic is captured in the first stage of our process. The

same idea applies to building the reuse infrastructure. The infrastructure can be different

for each DOACS. We do not suggest that this process will support every application domain

or apply to all DOACSs (it has not even been shown that every domain can be modeled

using current modeling techniques). However, we do suggest that this process will support

many application domains and many systems.

There are some characteristics that must exist in the domain and the system. The

system's knowledge base must have the capability to represent an organized collection of

reusable software components and the rules for their composition. We described this frame-

work in Section 3.2. The domain must be somewhat established (i.e., some structure must

exist for building applications in the domain, either informal or formal). This implies that

the domain is mature enough to have existing applications that could provide important

information during a domain analysis.

3-21

We have developed our process with the goal of future automation. Constraints

placed on each activity (such as knowing the particular software architecture) have been in-

cluded only where necessary. However, software engineers may be concerned about changes

made to these constraints while a domain model and knowledge base are evolving. For

example, suppose we modify our knowledge base structure after already implementing sev-

eral domains. What impact does this have on the knowledge base population process?

Will we have to respecify and re-implement the domain model? Are we forced to stick to

the original constraints? Although a more general knowledge base population process may

exist, we feel that our process can handle these problems if the proper attention is given

to the definition of each constraint.

3.7 Summary

A formal process for populating a knowledge base results when we apply the outline

described in this chapter to a candidate DOACS. The process that we have developed

incrementally evolves the domain - both the domain model and the reuse infrastructure

in the knowledge base. The process explicitly captures the role of feedback through the

evaluation of each activity. When the process is first started for some application domain,

most of the effort will involve the Create/Evolve Domain Model and Abstract Component

Behavior activities (activities one and two of Figure 3.4). As the process continues, effort

will increase in the Design Reuse Infrastructure and Implement Reusable Components

activities (activities three and four of Figure 3.4). The attention given to the Evaluating

Domain Development activity will depend on the particular requirements for testing (which

usually relates the size and complexity of the domain).

Although we have developed a general process, software engineers need to conduct

more application-oriented research into knowledge base population to gain more experience

and develop tools to assist in evolving domain models and structuring knowledge bases.

The DOACS concept has not yet been proven in the software engineering community. Our

research efforts and the efforts of other researchers will help to improve these software

development technologies.

3-22

IV. APTAS Knowledge Base Population Process

4.1 Introduction

This chapter develops a population process for the APTAS system. Chapter H

introduced APTAS as a prototype application composition system developed for the Air

Force to assist radar tracking engineers in the design and testing of trackers (radar tracking

algorithms). Therefore, the task is to design a process to populate the knowledge base of

APTAS with additional tracking information.

Before formalizing a knowledge base population process, one must understand how an

Application Specialist (called the Tracking Engineer) uses APTAS to compose trackers.

Section 4.2 describes this composition process. One should also understand the types of

information stored in the knowledge base. Although this information could conceivably

belong in an appendix, understanding the knowledge base was crucial to developing the

population process. Section 4.3 describes the knowledge base.

Section 4.4 describes the formal knowledge base population process that was devel-

oped using an instantiation strategy. The instantiation strategy is based on the general

process introduced in Chapter III and uses the descriptions of APTAS and its knowledge

base.

Section 4.6 presents some conclusions about the formal knowledge base population

process. Several of these conclusions are demonstrated in Chapter V using the existing

contents of the knowledge base.

4.2 Application Composition in APTAS

Chapter H introduced the APTAS system and briefly described its application com-

position process. This section thoroughly explains each stage of the application composi-

tion process. Figure 4.1 shows a data flow diagram capturing the composition process.

The composition process begins when the Tracking Engineer (the APTAS equiv-

alent of the Application Specialist) responds to questions presented by the Forms Gen-

erator and Display (20:1). When the engineer completes the forms, the Architecture

4-1

use input userinu

- T I ~md -..... S •)
I /

Generatortesteseiidrakr and dislay a dried rae architecture to th

Graph ispla UsrItrf .Te engneealr usen upae1heacieturlecadpses

Dom dn DL
Taxonomy and ------ I

Coding KODngn

design. Data files result from compiling and executing the tracker design. Test runs on

the Run-Time Interface simulate the tracker design.

There are several stages of the composition process that use information from the

knowledge base. These stages are the Forms Generator and Display, the Architecture

Generator, the Graphical User Interface, and the OIDL Code Synthesis Engine. Each

stage uses specific categories of information within the knowledge base. Because of the

importance of the knowledge base, a separate section describes each information category.

The rest of this section explains each composition stage in more detail.

4-2

4.2.1 Forms Generator and Display. The Forms Generator and Display stage

consists of a forms generator and an interface, referred to as the Dynamic Forms In-

terface. The forms generator, using information from the knowledge base, builds a set of

question forms and manages their presentation to the Tracking Engineer. The interface

lists the available forms and displays them to the engineer.

A form is either active (available for selection) or not active. The engineer selects

a form from the taxonomy summary (list of active forms). The selected form displays on

the interface as a set of questions and their associated responses.

Questions take one of four responses. Numeric questions require a number (integer

or real) within a specified range. Text questions require a string of characters within

a specified length. Exclusive choice questions require a single selection from a list of

responses. Checklist questions require the engineer to select a subset of the available

responses. Each question response executes a set of associated actions.

Some actions save values to component parameters or set special variables. Other

actions make forms active or not active. The engineer continues to respond to active forms

until completed. The completed forms specify a hierarchical tracker architecture generated

by the Architecture Generator.

4.2.2 Architecture Generator. The Architecture Generator builds tracker archi-

tectures. An architecture is a structure of component modules, submodules, and their

relational interfaces. The Tracking Engineer specifies an architecture (or module struc-

ture) through a sequence of question responses. Many of the engineer's responses select

component modules and set parameters that constrain (specify) the architecture.

The Architecture Generator transforms the specifications into a corresponding archi-

tecture using rules from the knowledge base. Each rule defines a specific module. Within

the rule is a set of submodules that may compose the module along with the conditions

that must be true for their inclusion in the architecture. Rules also include declarations

of external interfaces available to other modules and information defining relations be-

tween the submodules. By applying the rules, the generator derives the remaining tracker

architecture and passes an architecture description file to the Graphical User Interface.

4-3

4.2.3 Graphical User Interface. The Graphical User Interface presents the Track-

ing Engineer with a visual display of the tracker architecture. The display appears as a

set of interconnected icons. Specific icons represent modules, interfaces, and parameters.

The connections represent relationships between modules. Information from the knowl-

edge base defines the visual representation of each icon and its relationships. Section B.1.3

describes the various icons used by the APTAS system.

The engineer updates a tracker specification by editing the architecture displayed on

the canvas (interface window showing components). A canvas displays the structure of a

particular module. For instance, the canvas of a primitive module only displays parameters

and module interfaces. The user interface provides various operations to update the tracker

specification. Operations allow the engineer to add new modules and relationships, access

descriptive information from the knowledge base, change parameter values, and modify

relationships (i.e., change data type transferred between modules). At any point during

the update, the engineer can pass the revised tracker specification to the synthesis engine.

4.2.4 CIDL Code Synthesis Engine. The CIDL Code Synthesis Engine

generates a CIDL representation of a tracker architecture. This representation corresponds

to the tracker application specifie,: and designed in previous composition stages by the

Tracking Engineer. The engineer simulates the specified behavior using this design and

can translate it into standard programming languages (e.g., Ada).

The synthesis engine performs a rule-based transformation of the specification using

rules from the knowledge base. There are two kinds of rules: generic and domain-specific.

Generic rules map modules, interfaces, relationships, and parameters identified in the

specification to predefined structures in CIDL. These rules are part of the synthesis engine

itself. The engine applies generic rules to the specification before applying any domain-

specific rules.

Domain-specific rules act on combinations of parameter values for a particular mod-

ule. These rules specialize a module's CIDL structure generated by the generic rules

by substituting new CIDL structures supplied by the domain-specific rules stored in the

4-4

knowledge base. Substitutions continue until no more rules apply. The resulting collection

of CIDL structures corresponds to the tracker design.

4.2.5 Compiler, Execution Environment, and Run- Time Interface. After syn-

thesizing the tracker design, the system provides the Tracking Engineer with several capa-

bilities. The engineer might decide to translate the design into an equivalent Ada imple-

mentation through the system's CIDL to ADA Translator. APTAS provides an Ada

Compiler and Execution Environment. It also provides a Lisp Compiler and Execution En-

vironment that works directly with the CIDL design. The engineer can test an executable

tracker (Ada or Lisp equivalent) using the system's Run-Time Interface. This interface

simulates the tracker behavior using data generated in either execution environment and

simulates the tracker behavior from the engineer's specifications. If the tracker behavior

does not meet the intended specifications, the engineer might return to a previous stage in

the composition process, update the specification, synthesize a new design, and simulate

the new behavior.

The Ada Compiler and Execution Environment is an off-the-shelf product and does

not require any information from the knowledge base. The Lisp Compiler and Execution

Environment does not require any information from the knowledge base either. The Run-

Time Interface does require additional information that an APTAS user generates in the

Graphical User Interface but does not require specific information from the knowledge

base.

4.3 APTAS Knowledge Base

The knowledge base, introduced in Chapter II as the Domain Taxonomy and Coding

Knowledge Base, "maintains all of the data pertaining to an application domain which

is user to support the specification and synthesis of new code" (17:3). Figure 4.1 iden-

tified four stages in tracker composition that use information from the knowledge base.

The knowledge base provides APTAS with several different categories of information (e.g.,

reusable CIDL implementations of primitive modules, rules generating architecture repre-

sentations, questions eliciting specification information).

4-5

The information in the knowledge base for a particular domain is called a reuse

infrastructure. APTAS organizes each reuse infrastructure into seven categories of infor-

mation, including the Specification Taxonomy (question forms), Architecture Construction

Rules, Display Conventions, Type Descriptions, Library Components Structure, Library

Modules, and Coding Rules. APTAS calls these seven categories a Domain Taxonomy and

Coding Knowledge Base.

Each category of the Domain Taxonomy and Coding Knowledge Base contains unique

information (i.e., it provides some information about the domain not found in the other

categories). Each category also contains information found in other categories. For in-

stance, the variables included in the Architecture Construction Rules category are set by

actions within the Specification Taxonomy category.

Most changes to the knowledge base affect many categories. Figure 4.2 identifies

information in each category that is dependent on information appearing in other cate-

gories. The desired source of information is indicated using arrows to point away from

the originating category. Notice that most information originates from the Architecture

Construction Rules category. For instance, suppose a new module is added to the Archi-

tecture Construction Rules. The Specification Taxonomy may require a new question form

to access the new module. The Display Conventions may require a new icon definition for

the module. The Type Descriptions may require additional documentation on the module.

Other categories may also require additional information. The Knowledge Engineer must

remember to use the same information throughout the knowledge base categories, or the

APTAS system may not correctly support the new information (the system does not make

any consistency checks). By identifying the dependencies between information categories,

some critical relationships needed to formalize a knowledge base population process were

uncovered for the APTAS system.

Each domain has its own directory structure under a main directory. For instance, the

radar tracking domain is stored in the TRACKERDOAIWN directory. This directory holds the

reuse infrastructure (Domain Taxonomy and Coding Knowledge Base) and any applications

composed within the domain. The rest of this section describes the information contained

in each category and identifies several special knowledge base files.

4-6

Taxoanoay Conventins
am" Twin

Pbrn ProUSmote~. TVPWSVulaus R 4 Twa.

sh" VNIMM"

Codin Vatminob Co~no

--- --- --- -- MI ev h - - - - ---- --• ,,m - -- - - - -

the orm Geera onre Modulespa wtahircyofqeion forms Theefrs oti

As esribd n Sctodule2.1,uli thMoTosytmrlcissefato infrmtin ro

a c rh t

Forn 91M T6m

sho Vetmibn Pmminr .,V

This catgorydesrie Vafomas hirrcysiiar to anabtac yna te wt e

Figure 4.2 Association of Information Between Knowledge Base Categories.

4.3.1 Specification Taxonomy. The Specification Taxonomy category provides

the Forms Generator and Display with a hierarchy of question forms. These forms contain

sets of questions and related responses that capture some fundamental domain knowledge.

As described in Section 4.2.1, the APTAS system elicits specification information from

the Tracking Engineer through these forms and uses the set of responses to generate an

application architecture.

This category describes a forms hierarchy similar to an abstract syntax tree with each

node representing a specific form. The knowledge base refers to the forms as levels. Each

level has a unique identifier (very similar to a pathname). The first form in the category

is considered the root. Initially, one might think the forms hierarchy corresponds to the

mnodule hierarchy, because the level identifiers are often identical to the module names.

The level identifiers, however, do not have to relate to a particular module. They define

a separate hierarchy that may not correspond to the module hierarchy. A level identifier

begins a form definition. The form definition shown in Figure 4.3 begins with the level

4-7

/TRACKING/SIIGLZCSO
"Single eadCS0 Target Characteristics" FALSE

"Target Type"
STACK

"Known Target Type V"
VAIIABLE.srT(SIIGLi.TAGETr.MIV3EL, 0.0)
VAIIABL-SETr(SIIGLTrAB t-Kr..AX.-VEL, 0.0)
VARIABLLST(SINGLBTAIGET...RAX_.ACC, 0.0)
VARIABLLSrT(SIIGL.TABET.rNINALT, 0.0)
VAUIABLL_SZT(SINOGL&-TAJZET_.A_.LLT, 0.0)
VARIABLESrT(SIIGLETAI•lT.ANZEUT.ADT, "true")
VAIIABL_-SET(SIlGLZ.TARUT..AIW_..DURATIO0, "prolonged")
VAIIABL&_SKT(SIIGLKTAIRET..NSRANMU.LE•L,, 0.1)

"Other"
ACTIVATLLVIEL(/TlACKIIG/SINOLi.CSO/TAMIT.rCIRAS)

"Target Density"
IUMERIC [0.0, 10.0]

[0.0, 10.0) SAVE.VALUE(TAI•TEDSITT)
MD;

Figure 4.3 Sample Form Definition

identifier /TRACKING/SINGLECSO. The string appearing after the level identifier defines

the title that displays when the form displays during the composition process. The title of

this form is Single andCSO Target Characteristics.

The forms hierarchy may contain many forms. During composition (as noted earlier),

each form is either active (available for display) or not active. The boolean value following

the form title defines the initial state of the form (FALSE being not active). The state of

the form changes as the engineer responds to questions from active forms. Each response

may activate any of the descendant forms (forms lower in hierarchy). However, all of the

ancestor forms (forms higher in hierarchy) must also be activated for the form to become

available. The END keyword marks the end of a form definition.

Each form may include a set of questions that elicit specification information about

the tracker. Questions begin with a string representing the specification information it

acquires (Target Type and Target Density in the example).

A condition may optionally precede the question string. Conditions define when

the engineer can make a response to the question. Conditions are expressions (including

4-8

conjunctions and disjunctions) that evaluate to a boolean. The grammar in Figure 4.4

defines the structure for conditional expressions.

SCOIIDITION : -CONJUNCTr I CONJUNCTr "I" CONDITION
CONJUNCTr : ZXPlR I ZILPI "W" CONJUNCTr
ZP TOM IM lTSOP

TZR:- Identifier I Number I StringLiteral
WM.ZOP :-IzqnI" lIN" I"1LT"1 I 016r- I "LZI I "1OZ"

Figure 4.4 Grammar for Conditional Expressions

The question type follows the question string. Questions may be one of four types.

NUMERIC questions elicit a number (integer or real) within a specific range. The range

follows the type declaration and consists of a minimum and maximum value separated by

a comma and enclosed in square brackets ([0.0, 10.0]). TEXT questions elicit a string of

characters within a specified length. The length follows the type declaration and must be a

positive integer. STACK (or exclusive choice) questions elicit a single selection from a list of

responses. CHECKLIST questions elicit the selection of a subset of the available responses.

STACK and CHECKLIST questions have a set of valid responses that follows the type

declaration. Following each response is a set of actions to take when the response is selected

by the engineer. NUMERIC questions have a set of valid subranges that follow the valid range.

APTAS takes the set of actions following the subrange whenever the engineer's response is

within the subrange. TEXT que ';ons have a set of actions that follow the maximum length

and execute whenever the engineer responds to the question.

There are only four types of actions defined for the taxonomy. SAVE-VALUE stores

the engineer's response to the variable name passed as a parameter. VARIABLE.SET takes

a variable name and some value (constant or identifier) and sets the variable to the value.

ACTIVATE-LEVEL takes a level identifier and changes the state of its associated form to

active. DEACTIVATE.LEVEL takes a level identifier and changes the state of its associated

form to not active.

The knowledge base stores the forms defined by the Specification Taxonomy in a do-

main's global. form file. Form definitions begin after the LEVELS keyword, and a semicolon

4-9

separates each definition. A complete grammar for taxonomy files appears in the Software

User's Manual for APTAS (20:38-39).

4.3.2 Architecture Construction Rules. The Architecture Construction Rules

category provides the Architecture Generator with an organization of the modules available

from a domain. The structure for each module is captured by a rule. The collection of

rules defines a module organization similar to an abstract syntax tree; leaves represent

primitive modules (modules with CIDL implementations) and nodes represent modules

with submodules (i.e., modules composed of other modules). Primitive modules cannot

have rules defining their structure (see Section 4.3.5). Modules that are not primitives

must have their structure defined by a particular rule.

A rule begins with the module type. The module type, which must be unique,

is followed by the definition of the module type's structure. The structure consists of an

optional set of submodule declarations, followed by an optional set of interface declarations,

and ending with an optional set of relationship declarations. The rule shown in Figure 4.5

defines the structure of a TRACKERENVIRONNUT module type. The TRACKER.ENVIRONKIENT

module type has four submodule declarations and three relationship declarations. There

are no interface declarations in the structure.

Submodule declarations may begin with a conditional expression (see Figure 4.4) that

must evaluate to true for the submodule to be included in the architecture. Conditions

could imply a choice between alternate submodules or could imply an optional submodule.

Conditional expressions are not required and a submodule is always included when no

condition begins its declaration. The first submodule has no conditional expression and is,

therefore, always included within a TRACKEENVIRONNENT module. Following the optional

condition is the submodule's name and its type. The first submodule is named Sensor-Data

and is a SENSOR-NODEL type. If the submodule type is a primitive module type (i.e., there

is no rule that corresponds to the module type), then the declaration may conclude with

a set of parameter assignments (begun with a {, separated by semicolons, and ended

with a }. Otherwise, the module type has its own rule and the submodule declaration

does not have a set of parameter assignments. The SENSORNODEL is a primitive module

4-10

"TRIACK-ENvIZOuINET"
"Seasor.Data" "SrSO&_oIDEL"

{"ITEATIOIS" a TEST.-ITUATIOIS;
"PERTUIBATION.FACTOR" = 0.02;
"TIIGETSPECS" - -"[<CO KPUTK._V : : DEFAULTEQ1 ,

ARCS :- [0.089. 0.009, 1.78.
1.16, 92.31, 8.23]>,

<COCNPWI := "DEFAULT.EQ2 ,
ARCS := [0.191, 0.063. 2.46,

2.09, 81.01, -7.23]>]";
"SES01" - -""SuSOITYPE"}

default..tracker EQ 'true"
"Tracker" "TARGET.TIACKUR"

default-tracker 19 "true"
"Tracker" "NEVITDACKER1"

"10Output" "OUIPUTP-DISPLAY"
{"TABLEDATAFILE" =

"data-filea/default-tracker-table.data. txt";
"NAP.DATA_.FIL" -
"data.files/default._tracker..ap.data. txt";

"ITEATIONS" - T"KSTrTIRATIOIS}

REL("SensorScanFramToTracker", "Async",
"SenaorData. scaa-fraie.out", "Tracker. scaaframe.a",
-"GenericScaaFrame,)

REL("Operator.Query-toTracker", "AsyNc",
"Output.queryM.ot", "Tracker. user-queary.in",
""GemericQuery")

REL("TrackerDatato.Dieplay", "Asyac",
"Tracker.displaydataout", "Output. reply-in",
""GenericTrackData")

Figure 4.5 Sample Construction Rule Definition

type with four parameters assigned in this submodule declaration. The second submodule

declarations has a conditional expression and declares a submodule named Tracker of

TARGETTRACKER type (which has a rule defining its structure). The third submodule also

has a conditional expression and declares a submodule named Tracker of NEW-TRACKER

type. Only one submodule with the name Tracker may be included in the architecture

and the conditional expressions ensure that only one submodule declaration evaluates (i.e.,

only one of the two conditions can be true). The fourth submodule declaration declares

a submodule named Output of type OUTPUT.DISPLAY that is a primitive and assigns three

parameters.

4-11

Interface declarations may follow submodule declarations, however, the rule in Fig-

ure 4.5 does not have any. Interface declarations begin with the keyword DECL. The in-

terface includes three items (separated by commas and enclosed in parentheses). The first

item declares the name of the interface. The second item declares the type of the inter-

face. An interface is either an in.port (incoming data) or an out-port (outgoing data).

The last item contains the initial value of the interface. An example interface declaratica

appears below:

IDECL"DisplayDataOut". "0outort".)

The module with this interface declaration includes an out-port named Display.Data-0ut.

Interfaces are used to pass information between modules. Interfaces are connected together

(or to other modules) using relationships. APTAS defines six types of relationships. Async

relationships occur between module interfaces and represent asynchronous communication

where messages are buffered and modules do not wait for corresponding sends or receives.

Sync relationships also occur between module interfaces and represent synchronous commu-

nication where modules wait for corresponding sends or receives. Alias relationships occur

between the interfaces of a module and submodule where data is simply forwarded between

the two. A parameter-module relationship occurs between an entire module and its sub-

module and represents the access to a submodules functions. Apply.lunction relationships

occur between module in-ports and module (or submodule) functions and represent the ex-

ecution of a function whenever data is received at the interface. Forward-function-result

relationships occur between module out.ports and module (or submodule) functions and

represent the transfer of a function's result to a port.

Relationship declarations appear at the end of the module structure and complete an

Architecture Construction Rule. Relationships begin with the keyword REL and end with

a semicolon. These declarations include five items (also separated by commas and enclosed

in parenthesis). The first item declares the name of the relationship. The second item is

the relationship type. The third item declares the origin of the relationship (relationships

are one-way). The fourth item declares the target of the relationship. The last item is the

4-12

data type passed or expected by the relationship (parameter.module relations do not pass

or expect data). The example rule (in Figure 4.5) has three async relationships.

There may be any number of relationships within each construction rule, and there

may be many rules. However, the first construction rule is different from all the rest of

the rules. The Architecture Generator always applies the first construction rule. This

rule defines the application environment and determines the initial applicability of the

remaining rules. Therefore, the sequence of the construction rules is very important. A

rule defining the structure of a submodule should follow all the rules that include the

submodule within their structure definition.

APTAS defines an abstract architecture description (as described in Section 4.2.3)

by transforming a partial tracker specification through the application of these rules. The

knowledge base stores the Architecture Construction Rules in the global. form file. The

collection of rules begins with the keyword MODULES after the last form definition in the

taxonomy. Semicolons separate each rule. The rules share the taxonomy grammar defined

in the Software User's Manual for APTAS (20:38-39).

4.3.3 Display Conventions. The Display Conventions category provides the

Graphical User Interface with visual representations (or icon rules) for modules, param-

eters, relationships, and interfaces. Icon rules take three forms: display rules, relation

drivers, and constraint rules. A single display rule can define all component (module,

parameter, and interface) representations, or different display rules can define specific

component representations. Relation drivers define conventions for specific relationships.

Constraint rules define a relationship's multiplicity (minimum and maximum number) with

regard to a particular component. Section B.1.3 lists the visual standards for component

icons and relationships adopted by APTAS for tracker applications.

Display rules define an icon (shape and color) to represent a component. The rule be-

gins with some component identifier followed by an arrow (->). This identifier might begin

the definition for an entire component class (e.g., MODULE or IN-PORT), or it might begin the

definition for a specific module type. Figure 4.6 shows the display rule for a SENSOR-_MODEL.

The rest of the rule describes the visual representation by making assignments to graphical

4-13

SEISOI._NODEL -> ICON - IE..BLUE..3CT
LABEL a TOP DOTE
DEWAULT-POSTOI a CENTE
CON79MS -

NODULE -I ICON - SN.IICT
-- LTAI• - aCETERU NAME3
DEFAULTPOSITIO! - CUM

I.NPOIT -I ICON = fINI..CICLI.
LABEL - LEFT NAME
DEFAULTPOSITIO0 a LEFT

OUT.POIT -> ICON a KIIICIBCLE
LABEL - RICGBO NAME
DEFAULTPOSITIO0 - RIOrT

DISPLAY RELATIONS

Figure 4.6 Sample Display Rule

attributes. ICON is a required assignment that holds the name of some predefined icon files.

The sample rule selects a NEDBLUERECT (medium-sized, blue rectangle) as the icon. LABEL

is an optional assignment that declares the location of the icon's label and the contents of

the label. The label of this icon appears at the TOP and consists of BOTH the component

instance name and the component type. DEFAULT-POSITION is a required assignment that

declares the desired location of the icon when displayed. This icon would appear in the

CENTER of its parent module's display window (canvas). The last attribute, CONTENTS,

describes the internal component structure of the module that appears within the icon

and is also an optional assignment. In the example, a submodule (NODULE type) appears

as a SM-RECT (small, black rectangle) and an IN-PORT interface appears as a MINI-CIRCLE

(small, black circle). The final line of a display rule must declare whether the internal

relationships appear (DISPLAY RELATIONS) or do not appear (HIDE RELATIONS).

Relation drivers define a line (solid, dashed, etc.) to represent a relationship. The

driver begins with some relationship type (see Section 4.3.2) followed by a colon and the

keyword RELATION. Figure 4.7 shows the driver for PARAMETER-MODULE relationships. The

rest of the driver definition describes the visual representation for the relationship type

defining the attributes of the line. LABEL is an optional attribute that operates similar to

display rule labels. WIDTH is a required attribute that defines the width of the line. This

sample driver defines a line of width 0. COLOR is an optional attribute that defines the color

of the line (Orange Red in this example). If a relationship appears as some type of dashed

4-14

P*_ANKTEXMODULE : RELATION
WIDTH - 0
COLOI " "Oraog led's
DASHCOut, 4

DASH-LIST - 10 3 3 3
FlOH..END - PLAIN
TO.lElD = ARROW
TALID.PAIRs - (NODULE. NODULE)

Figure 4.7 Sample Relation Driver

line, two attributes describe the specific dash pattern. The DASH-COUNT attribute identifies

the number of dashes and blanks (should be an even number), and the DASH.LIST attribute

defines the length of each dash and each blank identified. The pattern is repeated over the

length of the relationship line. FROM.END and TO0END are required attributes that define

the appearance of the two ends of a relationship line. This example starts as a PLAIN line

(no arrow) and ends with an ARROW. The term EXTRAARG may complete a relationship

driver. However, the purpose of this term is not documented in the APTAS literature and

its purpose could not be determined through conversations with the APTAS developers or

through experimentation.

Constraint rules may define the multiplicity for some specific relationship type. Con-

straints begin with a number range ([, #] or [#, +]) that might define the minimum and

maximum number of a particular relationship (+ being no maximum). The number range

is followed by the keyword RELATION and a relationship type (or possibly a relationship

name). The constraint ends with a FROM, TO, or EITHER that probably constrains the rela-

tionship multiplicity in the specified direction. There are no constraint rules in the current

reuse infrastructure, and the purpose of these rules is not documented in the APTAS lit-

erature. Their intended purpose could not be determined through conversations with the

APTAS developers, but the constraint rules probably limit the number of relationships (by

type) that may begin from (or end at) a particular module or interface.

The knowledge base stores the Display Conventions in the global. gsdl-t file. The

conventions begin with the keyword TABLE followed by a domain identifier and end with

the keyword END. The conventions have a special grammar defined in the Software User's

Manual for APTAS (20:40-42).

4-15

4.3.4 Type Descriptions. The Type Descriptions category provides textual de-

scriptions for components and relationships. The descriptions can include the function of

each component, the purpose of parameters, the kinds of interfaces, and any other infor-

mation that might describe the component. The descriptions can also include definitions

for relationship types and any special data types available. Note that type descriptions are

used solely as documentation and are entirely optional. However, every description is avail-

able to the Tracking Engineer (the APTAS Application Specialist) within the Graphical

User Interface and can prove very valuable to less experienced engineers.

Each description begins with the name of the type being described, followed by a

colon. An at-sign (0) signifies the end of a description. Figure 4.8 shows a description for

the OUTPUT-DISPLAY module.

OUTPUT-DISPLAY:
This module is responsible for issuing run-time

requests for data to the database, including
any formatting of user inputs that may be
necessary, and displaying the data to the user.

PARA9ETERS TO SPECIFY:
ITERATIONS : int
(used to determine how many sets of data
it needs to process for the display;
it should equal the value of the
iterations parameter in the sensor-model)

TaBLEDaTaFILE : string
KAPDATAFILE : string

(These are the names of the data files which
will be created when the tracker is run.

Use these data files as input to the

run-time interface)

Figure 4.8 Sample Type Descriptions

The knowledge base stores the Type Descriptions in the global.desc file. The file

begins with the first description and the special end-of-sequence symbol (. :) marks the

end of all type descriptions. There is no special grammar defined for descriptions.

4.3.5 Library Components Structure. The Library Components Structure cate-

gory provides the Graphical User Interface with parameter declarations, interface declarations,

4-16

and relationship declarations for library modules (primitives). These declarations map to

specific icons (from the Display Components). The canvas for a selected primitive displays

the icons for each declaration in the component's structure.

A component structure begins with the name of a module type, followed by a

colon. The keyword MODULE follows the colon and precedes an equal sign. The com-

ponent structure definition ends with the keyword END. Figure 4.9 shows the structure

for a TRACK.DATABASEJEANAGER module. The DECLARE keyword identifies a list of any pa-

TRICKDATABASEANIAGER : MODULE-
DECLARE

PLATFORM : PLATFORNTYPE;
TUACK_BUFFEUSIZE :Ir;
TRACKHISTORYSIZE :IT;
PLATFORI4_POSBUFFER-_SIZE : Ir;

MISSIONBUFFERSIZE : lIT;
REQUIRIDAPPLICATIONIMORY : i1T;
RAN_1MEKORY : INt

DX : DATABASEMANIAGE
{MISSION.BUFFEP._SIZE - 6,

PLIATFORJPOSBUFTER.SIZE - 8,
TRACKHISTORYSIZE , 5,
TRACKBUFFEUSIZE - 2,
PLATFORM a AIRBORNE);

BSB : BACKINGSTOREBUFFERING
RELATION

BSBTDBIN-ASYIC ASYNC(DM.TRACK.OUT, BSB.TRACKIN) - STRING;

DM_TDB_IIASYNC ASYNC(BSB.DATA1_.GT, DM.DATA_.IN) = STRING
END

Figure 4.9 Sample Library Component Structure

rameter declarations and interface declarations, separated by semicolons. The RELATION

keyword identifies a list of any relationship declarations, also separated by semicolons.

This example structure has nine parameters, no interfaces, and two relationships.

Parameter declarations consist of a parameter name, followed by a colon and the

parameter's data type. Data types may be any standard CIDL type (29) ur a global

data type defined in the Library Modules. A parameter initialization (value assignment)

may follow the parameter type. If the parameter is a submodule (module type), then the

submodule's parameter assignment list, enclosed in braces, may replace the optional initial-

ization. The first declaration in this example (Figure 4.9) defines a PLATFORM parameter of

4-17

PLATFORNTYPE (special data type defined in another knowledge base category). The decla-

ration for the DH parameter identifies a DATABASE-IMNAGER submodule with five initialized

parameters.

Interface declarations are very similar to parameter declarations. The declaration

consists of an interface name, followed by a colon and the interface type. An initialization

can assign a start value for interface ports.

Relationship declarations begin similar to other declarations. The relationship name

precedes a colon and relationship type. However, a reference pair must follow the rela-

tionship type. A reference pair consists of two scope references, enclosed in parentheses

and separated by a comma. A scope reference identifies a relationship player and takes

the following form:

ISCOPEREFERENCE ::- Identifier I SCOPEREFEREICE.Identifier

Depending on the relationship type, the first reference represents the sender and the second

reference represents the receiver. A relation initialization may follow the reference pair.

This initialization identifies the data type or defines a function assumed by the relationship.

The first relationship declares the BSB_TDB_INASYNC relationship between interfaces of the

DM and BSB submodules that assumes a STRING data type.

Relationships declared for primitive modules in the Library Components Structure

are similar to relationships declared in the the Architecture Construction Rules. The

only difference is in form. Most primitive modules will not have relationship declarations

because this often indicates that the primitive module could be separated into lower-level

objects and, therefore, might not need to be a primitive module.

Notice that data types for parameters and relationships may range from simple struc-

tures (e.g., NUMBER or BOOLEAN) to very complex structures (e.g., RECORD [NAME : STRING;

SSAN : STRING; ADDRESS : STRING]). Relationships initialized with function definitions

can be very complex and follow the rules outlined in The CIDL Language User Manual (29).

The knowledge base stores the Library Components Structure in the global. gsdl-l

file. The Library Components Structure begins with a domain identifier followed by the

4-18

structure declarations. A grammar for this category appears in the Software User's Manual

for APTAS (20:40-41).

4.3.6 Library Modules. The Library Modules category provides the CIDL Code

Synthesis Engine with primitive module implementations. The library also includes files

with information needed by the primitive modules. The information includes code for

global type definitions, domain-specific type definitions, functions called from multiple

primitives, and any other information not normally encapsulated by the primitive mod-

ule. The library gives APTAS the capability to generate executable code and run tracker

simulations using the requested primitive implementations.

Primitive modules appear as leaves of the tree structure defined in the Architecture

Construction Rules. The Library Components Structure defines the primitive's accessible

parameters, interfaces, and relationships. Each primitive takes the form of a template with

up to four parts. The first part, PARAMETERS, defines application-specific characteristics

of the primitive (if any) through the declaration of attributes (parameters and interfaces)

accessible to the Tracking Engineer. The second part, INTERFACE, defines external char-

acteristics of the primitive (if any) that are visible outside the module (e.g., functions

available to other primitive modules). The third part, STRUCTURE, defines the internal

characteristics (local structure) of the primitive. The local structure may include the dec-

laration of internal primitives (submodules of a primitive module not available through

normal composition methods) and the establishment of relationships to and between the

internal primitives. This structure may also include the declaration of local variables and

functions. The fourth part, BEHAVIOR, defines the processing performed by the module

whenever created (i.e., how it produces output data from its input data).

The knowledge base stores the Library Modules in the include directory (within the

domain's home directory). Each module consists of a CIDL source file, a compiled file, and

all the files on which it depends. The APTAS documentation ((20:19,20) and (17:24,25))

gives a format for Library Modules that actual implementations have never used (the

existing modules are implemented in CIDL).

4-19

4.3.7 Coding Rules. The Coding Rules category provides the CIDL Code Syn-

thesis Engine with transformation rules. There are two types of rules: generic and domain-

specific (17:6,25-26). The generic cading rules are part of the synthesis engine itself and do

not change. Each generic coding rule consists of an architecture pattern and its correspond-

ing CIDL implementation. When portions of the tracker architecture match a pattern, the

synthesis engine replaces the pattern with the corresponding CIDL implementation.

Each domain-specific coding rule consists of a CIDL implementation, a test expression

pattern, and a corresponding replacement CIDL implementation. Test expressions usually

involve a module's specific parameter values. When the test expression and portions of

the synthesized code (resulting from generic coding rule replacements) match the pattern,

the new CIDL implementation replaces the previously synthesized code. The addition or

modification of domain-specific coding rules requires an experienced CIDL programmer.

The knowledge base stores the Coding Rules (domain-specific). However, there is no

evidence outside the documentation for their existence. The current APTAS system does

not have any of these rules.

4.3.8 Synthesis Support. There is another category of knowledge that provides

information to the CIDL Code Synthesis engine. It is called Synthesis Support and was

not shown in Figure 4.2 because it has no unique information. This category of knowl-

edge "contains templates which identify the CIDL parameters of each primitive module

type" (20:26). The templates describe an abstract syntax signature for the Library Mod-

ules, showing function names, parameter names and types, and optional default parameter

values. This category maps a primitive module type to an actual CIDL implementation in

the Library Modules (associates the name of the primitive module type to the name of an

implementation file) (21). These templates represent the signature that would result from

parsing a primitive module. Using the Synthesis Support, the code synthesis engine works

more efficiently because it does not have to parse all of the Library Modules.

4-20

4.4 APTAS Knowledge Base Population Process

After studying the knowledge base structure, putting new information into the Do-

main Taxonomy and Coding Knowledge Base is not an easy task. This section develops

a formal knowledge base population process that reduces the effort involved. The formal

process depends on information learned from the examination of APTAS and its knowledge

base, as well as the process outlined developed in Chapter III.

The APTAS developers summarized the knowledge base population process in the
following statement (17:20):

Building the knowledge base entails gathering and formalizing the expertise
of application domain specialists. The overall object is to capture general
information (terminology, parameters which affect system design, typical range
values for parameters, etc.), the taxonomic structure of tracking components,
and the reasoning used to construct designs (including how one design decision
places constraints on subsequent decisions).... This information goes into an
informal domain description document (or set of documents) to be used by
a knowledge engineer for formalization.... The knowledge engineering effort
(both collecting the information and formalizing it for storage in the knowledge
base) will generally continue over time, enriching the knowledge base as more
information becomes available. It is possible to generate designs when the
knowledge base is in the early stages of development; however, the flexibility
and diversity of those designs depend on the maturity of the knowledge base.

This statement is too informal to implement, however, it does contain several key roles

involved in the population effort and several important results. General domain knowledge

is captured by Domain Specialists into a domain description document (a domain model).

This model is formalized by the Knowledge Engineer and stored in the knowledge base.

Figure 4.10 displays the APTAS Knowledge Base Population Process. To remain

consistent with the quotation above, the Domain Specialists assume the role of the Do-

main Engineer, and the Knowledge Engineer assumes the role of the Software Engineer.

Several other changes that are specific to the terminology used in the APTAS documen-

tation appear in the process diagram. For instance, library modules represent reusable

components and the Domain Taxonomy and Coding Knowledge Base represents the do-

main infrastructure. The rest of this chapter describes the development of this formal

population process for the APTAS Knowledge Base.

4-21

ST-f

MODE DESIG 8--M DVLPET

•-•.--'!.V. T." I - o -

Fig urT Kole Bas--•eENT Po fr APTA

IWf M. '••", L / UARY --
I I 6,,.,,,.ft , M'1 ULES /

I~ ~ R AC,,T i .n,_,,- ,.-

4.5 Instantiating the Knowledge Base Population Process

To instantiate a population process for a specific system, the methods and constraints

involved in each of the general process outline activities must be defined. This section

presents a strategy for instantiating a formal process for a specific system using the generai

population process.

Given: an application domain and a description of the Domain-Oriented Application
Composition System.

Produce: the methods and constraints to populate the knowledge base with new
domain information.

Strategy: Perform the following:

1. Formalize the domain modeling requirements:
F bound the application domain (define what to analyze),

4 identify sources of domain information (especially existing applications),

and
T explain procedures to evolve the domain model.

2. Specify the domain model structure.
3. Select the domain modeling approach that meets the modeling requirements

and best fits the structure of the domain.
4. Formalize the specification requirements (including interface standards).

5. Select an abstraction technique that sufficiently captures component (prim-
itive module) behaviors and fits into the framework of the chosen modeling
approach.

4-22

6. Formalize the design requirements:
"* capture standard design practices that control application composition

and
"* explain procedures to evolve the reuse infrastructure (knowledge base)

design.
7. Design the knowledge base structure and map corresponding structures from

the domain model.
8. Formalize the reuse infrastructure implementation requirements:

"* identify the implementation language,

"* define the software architecture(s) required (or allowed) in the system,
and

"* explain procedures to change component implementations without ad-
versely affecting generated applications.

9. Select software development tools to meet the implementation requirements.

10. Formalize the test and evaluation requirements:

"* describe consistency checking requirements (of domain model and reuse
infrastructure design),

"* define completeness requirements (e.g., all primitive components imple-
mented), and

"* explain measures to test any proposed evolutions against existing ver-
sions.

4.5.1 Create/Evolve Domain Model. The first three steps of the instantiation

strategy must often be repeated for each domain captured in the knowledge base. The

first step formalizes the modeling requirements: bound the application domain, identify

existing domain knowledge sources, and explain domain model update procedures. The

second step defines the domain model structure. The third step selects a domain modeling

approach (either an existing approach or a new one). The Create/Evolve Domain Model

activity uses the domain modeling approach, controlled by the modeling requirements, to

capture domain information into the domain model structure. A domain model results

from the capturing of domain information during this activity.

Although this thesis does not focus on the modeling of specific domains, a specific

domain must be selected and bound during the first step of the process. APTAS already

captures a formal domain representation in its Tracking Taxonomy and Coding Knowledge

Base. The information currently captured in the knowledge base involves the radar track-

ing domain (specifically, the domain of track-while-scan, multiple-target tracking

systems).

4-23

During the first step, any existing sources of information must be identified. The

primary source of domain information is the Tracking Taxonomy and Coding Knowledge

Base itself. This information must be supported when adding new information to the

knowledge base. Because there is no domain model for this existing information, a domain

model must first be reverse engineered from this information before capturing new infor-

mation. This adds some bias to the resulting domain model because the knowledge base

structure depends on the system requirements. Two documents from Lockheed, the Fi-

nal Report for APTAS (17) and the Avionics Tracking System Specification for Automatic

Code Synthesis (16), have additional information about the tracking domain captured in

the knowledge base. Existing tracker implementations and radar textbooks, like those

written by Blackman (5) and Hovanessian (13), may provide new domain information to

capture.

Procedures to update the domain model are also explained during the first step.

Updates to the domain model result from capturing new domain information. The model

organizes the process of knowledge identification and encapsulation through its formal

structure of object classes and associations. Model updates result bv adding new classes,

associations, or attributes and by following the specific modeling approach selected during

the third step of the process instantiation.

Ideally, the Knowledge Engineer and the Domain Specialists define a formal domain

model structure (meta-model) capable of representing every aspect of the specific domain

in the second step. Although not based directly on the tracking domain, a domain model

structure can be defined that is general enough to capture the information currently stored

in the knowledge base and to capture new information identified in the domain. The model

structure is relatively simple and follows the Rumbaugh object modeling guidelines (34).

The object model structure shown in Figure 4.11 describes the information captured from

the tracking domain. Object classes represent modules, parameters, interfaces, relation-

ships, forms, questions, responses, and other important classes. Associations represent

the relationship between forms and modules, as well as the structure of the modules and

forms. Attributes represent object instance names, types, and other information relating

to particular object instances.

4-24

Figure 4.11 Domain Model Structure.

Because the domain model structure originates from the Rumbaugh Object Modeling

Technique (34), this technique is selected as the domain modeling approach. A domain

model is created through the application of the Object Modeling Technique cn a specific

domain. Updates to the object model, representing new domain information, evolve the

existing domain model without corrupting previously captured information. The Domain

Specialists can also use this approach to specify the behavior of any primitive modules

because this technique includes more than just an object model. Functional models and

dynamic models are used to specify behaviors during the Abstract Primitive Module Be-

havior activity shown in Figure 4.10.

4.5. Abstract Primitive Module Behavi or. The next two steps (from Section 4.5)

to instantiate the Knowledge Base Population Process for APTAS involve the Abstract

Primitive Module Behavior activity. This activity specifies implementations for primitive

module behaviors (i.e., their dynamic and functional models). The first of these two steps

(step 4) directs us to formalize the specification requirements (e.g., interface standards)

that define the results of behavior abstraction. The second step (step 5) directs us to select

an abstraction technique.

4-25

It is important to realize that the Knowledge Engineer can generate many different

implementations that meet a primitive module's specified behavior. The specification re-

quirements declare the global data types and utilities that primitive modules must use. A

dictionary explaining domain-specific terminology might also appear with these require-

ments. The specification requirements must also include some interface standard to ensure

the proper passing of data between primitive modules regardless of specific implemen-

tation. Such standards might include communication protocols, naming conventions, or

special data types. An interface standard might exist for every primitive identified in the

domain model.

The interface standard for the domain consists of communications through data ports

or function calls. Input data ports (In-Ports) receive a particular data type from another

module. Output data ports (Out-Ports) send a particular data type to another module.

Operations (external functions) may be called by another module (which also provides

data to the operation). Operations might also send data to another module's in.port.

Functional models and dynamic models from the Rumbaugh technique (34) define the

abstract primitive module behaviors. The object model portion of this technique is already

used as the domain modeling approach. The dynamic and functional models specify the

behavior to whatever detail necessary. Data dictionaries augment the understanding of

these models by describing (in English) what the models represent.

The Create/Evolve Domain Model and Abstract Primitive Module Behavior activi-

ties results in the domain model and a set of primitive module definitions that fully specify

an application domain and provides information to define the rest of the knowledge base

population process.

4.5.3 Design Domain Taxonomy and Coding Knowledge Base. The next two

steps (from Section 4.5) involve the Design Domain Taxonomy and Coding Knowledge

Base activity. This activity takes the organization of modules captured in the domain

model and represents it in the form required by the knowledge base. First (step 6), the

design requirements are formalized by describing the knowledge base structure, mapping

domain model structures to knowledge base structures, identifying structures that must be

4-26

implemented, and capturing standard design practices. Second (step 7), a software engi-

neering methodology is selected (or developed) that can satisfy all the design requirements.

Section 4.3 described the knowiedge base structure in detail. The domain model

structure was derived from the knowledge base structure (because this thesis does not

attempt to structure the tracking domain as an expert). This makes mapping structures

between the model and the knowledge base rather straightforward. Structures requiring

implementation have also been identified; namely, the primitive modules. The APTAS sys-

tem already contains a structure to capture standard design practices through its question

forms; therefore, the design requirements have already been presented.

Selecting a methodology to design a knowledge base from the domain model is not

quite as easy. The method shown in Figure 4.12 was proposed after looking at the relations

between the seven knowledge base categories (shown previously in Figure 4.2) and realizing

that each category has its own grammar. The domain model should already capture

m•'•la• fb° I Imma

any design improvements passed back from the Evaluate Domain Development activity

(described below in Section 4.5.5). The improvements may identify something in the

domain model that was overlooked or misrepresented during design.

4-27

The updated domain model may result in the addition of new modules, the addi-

tion of new relations, the addition of new interfaces, or result in other changes to the

existing Architecture Construction Rules (Design Architecture Construction Rules of Fig-

ure 4.12). The Knowledge Engineer must follow the Architecture Grammar when making

these changes. New modules may allow the system to compose new applications. New

modules might improve or change the performance of previously composed applications.

New relations and interfaces might provide other modules access to more data and func-

tions. Other improvements might result from modifications to any existing characteristics.

The updated domain model may also result in the addition of new levels (forms), the

addition of new questions, or the modification of questions to the Specification Taxonomy

(Design Specification Taxonomy of Figure 4.12). The Knowledge Engineer can add new

forms to elicit additional specification information during composition. New questions for

existing forms might also elicit additional information. Modifying an existing question

might improve submodule specialization through the activation of additional forms or the

selection of new primitives or parameters. Other modification might cause questions to

apply only under certain conditions. More subtle changes occur when the model results in

different actions taken for the response of an existing question. Such modifications might

not be visible until much later in composition. For instance, if a modified question now

sets an additional parameter affecting application simulation, nothing will appear different

until a user simulates the new application. Because actions are the only way to set the

internal variables (status variables) used in the Architecture Construction Rules, these

variables (as well as module parameters) must be closely monitored.

The remaining information captured in the domain model affects the three other

knowledge base categories. Changes to these categories do not affect the performance of

applications composed using APTAS. The Knowledge Engineer can add new icons, change

existing icons, or improve the application domain documentation. The Application Spe-

cialist (particularly the Tracking Engineer) has access to new or updated information as

soon as the changes occur. New primitive modules (or changes to existing primitives) re-

quire changes to the Library Components Structure (and possibly the Display Conventions

or Type Descriptions) and also require new (or changed) implementations.

4-28

4.5.4 Implement Primitive Modules. Any new primitive modules, or any changes

to existing primitives, require changes to the Library Modules (and possibly the Coding

Rules or Synthesis Support). The new (or changed) primitives might give the Application

Specialist the capability to compose applications with new behaviors. Changes to the

synthesis support have the same impact. Modifications to existing library modules might

improve tracker performance or correct previous errors.

All primitive module updates occur during the Implement Primitive Modules activity.

Two steps from the process instantiation strategy (from Section 4.5) define this activity.

The first (step 8) formalizes the implementation requirements: identify the implementation

language, define a software architecture, determine priorities for implementing primitives,

and explain procedures to avoid new implementation integration problems. The second

(step 9) selects a software development environment to do the implementations.

The Knowledge Engineer must implement primitive modules using CIDL. As men-

tioned in Section 4.3.6, primitive implementations (Library Modules) consist of four parts.

The PARAMETERS part represents a primitive's parameters and interfaces. This information

is available in the new Architecture Construction Rules. The BEHAVIOR part implements

(in CIDL) the behavior abstracted during the Abstract Primitive Module Behavior ac-

tivity. Any data structures and functions (not externally available) needed for behavior

implementation must be declared in the STRUCTURE part. The INTERFACE part is not well

documented. Apparently, it serves to declare information originating within the primi-

tive and accessible to other modules. This being the case, PARAMETERS would represent

information required by the primitive and originating from another module. These four

parts represent the software architecture APTAS uses for all primitive implementations.

At this point, implementation priorities are all equal. With a robust domain model and

knowledge base design, priorities might have more impact during implementation. How-

ever, the Knowledge Engineer must be careful when integrating new implementations to

ensure they are accessible to the Tracking Engineer through the Specification Taxonomy

(question forms).

Implementations must occur within the CIDL environment of the APTAS system.

The Knowledge Engineer can access this environment using the synthe program in the

4-29

APTAS bin directory. Primitives are implemented using this development environment

and an object-oriented programming technique (34).

4.5.5 Evaluate Domain Development. The last step in instantiating the Knowl-

edge Base Population Process for APTAS involves the Evaluate Domain Development

activity. This step (step 10 from Section 4.5) formalizes the test and evaluation require-

ments. These requirements describe the consistency checks that must be made during the

other four activities. They define what determines the completion of each activity. They

also explain measures that compare the updates made at each activity against the old

information (i.e., measure the changes resulting from each activity execution). Different

requirements apply to each of the other four activities.

The requirements for the Create/Evolve Domain Model activity involve checking the

developing domain model for consistency against the domain model structure (see Fig-

ure 4.11) and determining when the modeling activity is complete. The model structure

requires that forms have at least one question and questions have at least one response.

Submodules must consist of at least one other module. The elicits-information-about asso-

ciation (between questions and modules) cannot be checked since it is optional; however,

each question normally associates with at least one module. The interfaces-with associ-

ation (between modules) cannot be checked since it is also optional. A final consistency

check is the inclusion of at least one primitive module. Other consistency checks may be

added to further constrain model creation/evolution, such as requiring a description for

each module or requiring at least one parameter for each primitive. The evaluation of the

Create/Evolve Domain Model activity is complete when all the consistency checks pass.

The requirements for the Abstract Primitive Module Behavior involve checking the

dynamic and functional models against the standards developed by Rumbaugh (34). An

event (resulting in a module changing state) requires a source (probably from another

module's dynamic model). Events should involve a module interface; those that do not

(external events) require a separate definition. All guards and data passed with events

must be defined by some state's activities/actions or some module's attributes. Activities

and actions should correspond to distinct functional models. Data passed into and out of

4-30

a functional model should correspond to data passed with events or to a module's inter-

faces and parameters. The evaluation of the Abstract Primitive Module Behavior activity

is complete when all primitive modules identified in the domain model have consistent

functional models, dynamic models, or appear as data stores (passive objects) in existing

functional models.

The requirements for the Design Domain Taxonomy and Coding Knowledge Base

involve checking the consistency of the information in the knowledge base categories. All

parameters set in the Specification Taxonomy or listed in the Library Component Struc-

tures must correspond to parameters declared in the Architecture Construction Rules.

Module icons defined in the Display Conventions must correspond to modules declared

in the Architecture Construction Rules. Status variables used in the Architecture Con-

struction Rules and Specification Taxonomy must be set by question responses in the

Specification Taxonomy. The Architecture Construction Rules may declare only prede-

fined relationship and interface types. The Display Conventions may define icons for these

same relationship and interface types. Consistency checking the Type Descriptions would

only provide a warning, and any checks of this category were ignored. A final consistency

check involves ensuring that no forms or modules exist in these categories that do not

appear in the domain model. The evaluation of the Design Domain Taxonomy and Cod-

ing Knowledge Base activity is complete when all forms, questions, modules, and their

attributes are transferred from the domain model to the Domain Taxonomy and Coding

Knowledge Base.

The requirements for the Implement Primitive Modules involve checking the remain-

ing knowledge base categories for consistency with the other categories. Primitives defined

in the Library Modules must correspond to primitive declarations in the Architecture Con-

struction Rules. AU the parameters and interfaces must appear in the PARMTERS and

INTERFACE parts in the Library Modules. Coding Rules must correspond to primitives in

the Library Modules. Items in the Synthesis Support must correspond to primitives in the

Library Modules. Variables used in a module's dynamic model (which are not parameters,

interfaces, or passed with events) must appear as local variables in the STRUCTURE part of

the primitive's implementation in the Library Modules. Checking that the BEHAVIOR part

4-31

is consistent with a primitive's dynamic and functional models is difficult and depends on

the Knowledge Engineer's implementation technique. The evaluation of the Implement

Primitive Modules activity is complete when all behaviors specified in the Abstract Primi-

tive Module Behavior activity have corresponding Library Modules and Synthesis Support

items.

The Domain Specialists and Knowledge Engineer may make many changes. Some

changes correct consistency errors or move toward completeness. Other changes result from

additional requirements from the Tracking Engineer and begin by adding new information

to the domain model or behavior specifications. A suggested procedure might involve

developing several example applications (like the default-tracker) whose behaviors are

known. Every time the knowledge base is updated, these example applications should

be simulated to verify their behaviors (make sure they still execute as expected). The

procedures used to test and evaluate a domain's development must ensure the integrity of

the previous information, thereby improving the confidence in the integration of any new

information.

4.6 Summary

This chapter has instantiated a process to populate the APTAS knowledge base. The

beginning of this chapter explained the general operation of the APTAS system and how

each part of the system used the knowledge base. A great deal of information was covered

on the formal structure of the knowledge base and the types of information required by

the various categories. This information was crucial to developing the APTAS population

process.

This process could conceivably be used for any application domain because the do-

main model structure is not dependent on a particular application domain (i.e., knowledge

base structure was used to develop the domair model structure). In most cases, however,

a Domain Engineer would develop a domain model structure based on the particular ap-

plication domain itself. One should provide the same level of detail about the specific

application domain (particularly when describing the domain model structure) that was

4-32

provided about the knowledge base. This information would result from bounding and

scoping the domain.

The process itself consists of five activities: Create/Evolve Domain Model, Abstract

Primitive Module Behaviors. Design Domain Taxonomy and Coding Knowledge Base,

Implement Library Modules, and Evaluate Domain Development. The first activity results

in a domain model. The second activity uses the domain model to identify and define

primitive i iodules. The third activity places information captured in the domain model

into the knowledge bas-. The fourth activity places the behaviors captured in the primitive

module definitions into the knowledge base. The final activity catches any mistakes that

might have been made during the other activities.

Some of the process activities could be automated or could have development tools

built to assist in their execution. Graphical environments could support the creation and

evolution of domain models, as well as the abstraction of primitive module behaviors.

Transformation functions could take the domain model and behavior definitions and map

them directly into corresponding knowledge base structures. Many consistency and com-

pleteness checks for the last activity could be automated. Automating these checks, as

well as automating each of the other activities in the Knowledge Base Population Process,

should be the goal of future research.

The next chapter describes how this formal population process was used to populate

the Tracking Taxonomy and Coding Knowledge Base with new information.

4-33

V. A Typical APTAS Knowledge Base Population

5.1 Introduction

The process developed in previous chapters depends upon a domain model. The

model results from the initial application of the Create/Evolve Domain Model activity.

The Knowledge Engineer cannot use the five-step process to populate the knowledge base

without a domain model. As mentioned previously, a domain model should capture infor-

mation in a form that Domain Specialists understand. The model serves as input to every

other population process activity, except the Implement Library Modules activity.

Currently, the APTAS Knowledge Base contains information that supports the gen-

eration and simulation of very simple trackers. However, the tracking information stored

in the knowledge base, representing the tracking domain's reuse infrastructure, has no

corresponding domain model (none found in the available documentation). Therefore, a

tracking domain model must be created that corresponds to the existing contents of the

knowledge base. Section 5.2 describes a procedure to reverse engineer the existing contents

of the knowledge base and shows the resulting tracking domain model.

The Design Domain Taxonomy and Coding Knowledge Base activity transforms the

information captured in the model into representations captured in the knowledge base.

Section 5.3 describes a procedure to transform the tracking domain model into the form re-

quired by the APTAS Knowledge Base and compares the knowledge base files transformed

from the new tracking domain model to those files currently in the knowledge base.

An important task of the Create/Evolve Domain Model activity involves updating

(evolving) an existing domain model so new information can be propagated to the knowl-

edge base. Section 5.4 describes a procedure to evolve the tracking domain model. Adding

another primitive module (an intersecting tracks generator) as a substitute submodule

of an existing primitive module (the sensor model) shows the implementation of these

evolution procedures.

APTAS builds trackers using the information from the knowledge base, especially

the primitive module implementations. The most tedious activities in the population

process involve capturing the primitive modules: Abstract Primitive Module Behavior

5-1

and Implement Library Modules. The first of these two activities results in functional

definitions (specifications) for the primitive modules while the second results in CIDL

implementations for these specifications. Section 5.5 describes a procedure to specify a

primitive module's behavior and defines the behavior of the intersecting tracks generator

module. Section 5.6 describes a procedure to implement a primitive module from its

specification and implements the intersecting tracks generator primitive module (adding it

to the Library Modules and Synthesis Support).

The Knowledge Engineer can evaluate each stage of the domain development before

proceeding to the next stage. The Knowledge Engineer should always evaluate changes

to the contents of the knowledge base before making it available to any Tracking Engi-

neers. Section 5.7 describes procedures to evaluate the domain model, the knowledge base

transformed from the model, the functional specifications, and the CIDL implementations.

5.2 Creating the Tracking Domain Model

Because the existing contents of the knowledge base do not cause any errors during

APTAS operation, the tracking domain model is reverse engineered from the knowledge

base without first evaluating the contents formally. However, the resulting domain model

was evaluated and indicated several small inconsistencies. The reverse engineering proce-

dure shown in Figure 5.1 creates an initial tracking domain model. This reverse engineering

procedure was implemented using Software Refinery.

10 St#ucure Doin Mode Stnaore

Figure 5.1 Reverse Engineering Procedure.

The procedure consisted of three functions. The first function parses the existing

APTAS Knowledge Base information using the knowledge base structure described in

5-2

in Section 4.3. This structure was represented using four grammars developed with the

DIALECT tool (Software Refinery's parser generator). These four grammars parse knowl-

edge base files into an abstract syntax tree representation in Software Refinery's object

base. The object base provides a collection of operations to create and manipulate objects

in an abstract syntax tree. The intermediate formats for the knowledge base and domain

model are actually abstract syntax trees of objects within the object base.

The second function transforms the abstract syntax tree representation of the knowl-

edge base into an abstract syntax tree representation of the domain model using a simpli-

fied representation of the domain model structure described in Section 4.5.1. The domain

model's abstract syntax tree was built by transforming knowledge base objects into their

corresponding domain model objects by making the predicates in Figure 5.2 true. Note

Vr [r E ArchConstRule == 3m [m E ModuleObjs
A Name(m) = NameTezt(r)
A (r - first(ArchConstRule) :.

TypeOfModule(m) = ENV)
A (r $ first(ArchConstRule) o

TypeOfModule(m) = SUB)
A SubModRels(m) = SubModuleLiat(r)
A Relations(m) = ModRelList(r)
A Interfaces(m) = ModDeciList(r)]]

Vl [I E LibCompStruct • 3m [m E ModuleObjs
A Name(m) = Name(l)
A TypeOfModule(m) = PRI
A Relations(m) = RelList(l)
A Interf aces(m) = DeclList(l)
A Parameters(m) = DeclList(1)]]

Vd [d E Descriptions • 3m [m E ModuleObjs
A Name(m) = Name(d)
A DescOfModule(m) = TypeDesc(d)]]

VC Ic E Conventions 3m [m E ModuleObjs
A Name(m) = Name(c)
A Modulelcon(m) = Iconldentifier(c)]]

Vs [9 E SpecTazonomr == 3f [f E FormObjs
A Name(f) = Name(s)
A TitleOfForm(f) = FormTitle(s)
A Initiate?(f) = ActiveFlag?(s)
A Questions(f) = QuestionList(s)]]

Figure 5.2 Reverse Transformation Predicates.

5-3

that the normal direction of transformation is from domain model to knowledge base

(forward transformation). To avoid influencing the domain model with knowiedge base

structure details the direction of transformation implemented by these rules (knowledge

base to domain model) is not part of the usual population process.

The domain model structure was also represented using a grammar developed with

the DIALECT tool. However, the domain model structure was simplified for the reverse

transformation (primarily because this direction of transformation should not occur more

than once). Therefore, a separate function traverses the transformed abstract syntax tree

and writes the domain model in its proper ascii form (i.e., corresponding directly to the

domain model grammar described in Appendix A).

The reverse engineering procedure built an initial tracking domain model. Figure 5.3

shows an object model representation of the tracking domain model. This representation

ENVIRONMENT

SSiiiian-Fr a.......... J

Figure 5.3 Partial Tracking Domain Model.

does not show all the modules or any of the question forms. It also does not show any

of the module parameters or interfaces. The figure displays only the portion of the model

5-4

used to complete this research. Relation objects replaced Rumbaugh object associations

and submodule objects replaced Rumbaugh object aggregations.

Before using this initial tracking domain model created with the reverse engineering

procedure, the model was transformed back into the APTAS Knowledge Base, and the

new knowledge base files were compared to the existing files.

5.3 Designing the Tracking Knowledge Base

Transforming the domain model file into the knowledge base files is the purpose

of the Design Domain Taxonomy and Coding Knowledge Base activity. This procedure

implements the normal transformation direction and consists of only two functions (versus

the three developed for the reverse engineering procedure). The knowledge base files

are written during the transformation function. The transformation procedure shown

in Figure 5.4 create new knowledge base fies from the initial tracking domain model file.

Domain Model Stncure KB St'iciWe

Domain om Mdl ntmda DmnMd PAMod~ DU tofrnat toKB

Figure 5.4 Forward Transformation Procedure.

The procedure consists of two functions. The first function uses the domain model

grammar to parse the tracking domain model file into an abstract syntax tree. As men-

tioned earlier, the domain model grammar was built from the structure presented in Sec-

tion 4.5.1. The second function traverses the abstract syntax tree and uses the knowledge

base structure (from Section 4.3) to write new APTAS Knowledge Base fies.

The rules for the forward transformation procedure were derived from predicates sim-

ilar to those for the reverse engineering procedure. The forward transformation, however,

required the creation of multiple knowledge base files from a single domain model file. The

knowledge base files resulting from the transformed domain model in Figure 5.3 should

appear identical (if not very similar) to the original knowledge base files. While informa-

5-5

tion was condensed in the reverse engineering procedure, information was expanded in the

forward transformation. The forward transformation postconditions are characterized in

Figure 5.5.

Yf If E FovmObja 3a Is E SpecTazonomny
A Name(s) = Name(f)
A FormTitle(s) = TitleOfFoarm(f)
A ActiveFlag?(s) = Initiate?'f)
A QuestionList(s) = Questions(f)]]

Vm i(m E ModileObjs
& TypeOfModule(m) • PRI) = 3r [r E ArchConstRule

A NameTezt(r) = Name(m)
A SubModuleLiat(r) = SubModRela(m)
A ModRelList(r) = Relationa(m)
A ModDeclList(r) = Interfaces(m)
A (TypeOfModule(m) = ENV =•

r = first(ArchConstRule)]]

Vm [(m E ModuleObjs
& TypeOfModule(m) = PR) = 31 [1 E LibCompStruct

A Name(l) = Name(m)
A DecdLiat(l) = Interfaces(m) U Parameters(m)
A RelLiat(l) = Relations(m)]]

'Vm Im E ModuleObjs = 3d Id E Descriptions
A Name(d) = Name(m)
A TypeDesc(d) = DeacOfModule(m)]]

Vm [m E ModuleObja • 3c [c E Conventions
A Name(c) = Name(m)
A Iconldentifier(c) = Modudelcon(m)]J

Figure 5.5 Forward Transformation Postconditions.

As expected, the knowledge base files that resulted from executing the forward trans-

formation procedure appeared almost identical to the original knowledge base files. The

major differences were in the indentation and carriage returns between the two sets of

knowledge base files, and the capitalization of variable names and symbols in the new files.

Therefore, although the two knowledge bases were behaviorally equivalent, the transfor-

mation resulted in minor style differences.

The APTAS system operated no differently with either its new files or its existing

files. Therefore, the two transformations (forward and reverse) succeeded in creating an

initial domain model that captured the current contents of the knowledge base. The

5-6

initial tracking domain model served as a baseline to describe and test procedures for the

remaining activities of the knowledge base population process.

5.4 Evolving the Tracking Domain Model

Evolving a domain model involves the participation of the Domain Specialists. The

Create/Evolve Domain Model activity uses a selected modeling approach, controlled by a

domain model structure and any modeling requirements, to represent domain knowledge

(including information from any existing systems) in a domain model.

The domain model structure was used to create an initial tracking domain model and

to transform the model into the knowledge base files. This domain model structure controls

the modeling approach and is crucial to performing this stage of the population process.

The selected modeling approach involves updating the domain model file using this domain

model grammar. The grammar captured all aspects of the domain model structure. A

Domain Specialist simply updates the tracking domain model file to represent any new

domain knowledge (using any ascii text editor) and saves the new domain file. Evolving

the initial tracking domain model illustrates this procedure.

The tracking domain model shown in Figure 5.3 included a primitive module with the

instance name SENSOR DATA. A simple modification of this primitive through object special-

ization is shown in Figure 5.6. The modification specializes the SENSOR DATA submodule

into two different primitive modules. The existing primitive module, SENSOR MODEL, is the

default selection and remains unchanged (except for its new hierarchical position) in the

domain model. The INTERSECTING TRACKS GENERATOR is a new primitive module. This

presentation of evolving the tracking domain model only shows the concept for the pro-

posed modification. The real evolution task involves a Domain Specialist actually making

these changes to the text in the domain model file.

The domain model file required several changes to realize this modification. First,

the TRACKER ENVIRONMENT must include the option of selecting INTERSECTING TRACKS

GENERATOR submodule. The SENSOR DATA submodule declaration may be one of two types,

either the existing SENSOR MODEL primitive or the new INTERSECTING TRACKS GENERATOR

5-7

Figure 5.6 Evolved Tracking Domain Model.

primitive. Adding conditional expressions before the two submodule declarations (where

only one condition is ever true) completes this change. Next, the new primitive module

structure shown in Figure 5.7 was created. Notice that this primitive module structure

includes the parameters and interfaces much like declaring the attributes of an object class.

However, the parameters are initialized with values that must be generated by elicitation

questions. A new elicitation form corresponding to this new primitive was added to the

domain model that was not shown in Figure 5.6. A new question was also added to the
root form (/TRtCKING) to determine which option to use during tracker specification. The

existing SENSOR MODEL primitive required no changes.

5.5 Abstracting the Behavior of the Intersecting Tracks Generator

The domain model file identifies several types of modules. The first module is the

ENVIRONMENT module. This module is part of every tracker. Primitive modules are of

the PRIMITIVE type. All other modules are of the SUBMODULE type. The type of module

5-8

MODULE INTERSECTING3-TRCKS.GENERAFTOR (PRIMITIVE)
Description: "This module implements Lang Hong's routine for

generating noisy target data with false alarms.
This module first generates two perfect
intersecting tracks and then adds noise with a
normal distribution to obtain more realistic
target observations. Uniformly distributed

false alarms within predetermined gates about
the track are then added."

Icon: MEDBLUERECT
Parameters:

ICOORDT1 (INT) a IT1
YCOORDT1 (III) - YT1
ICOORDT2 (INT) - X_T2
YCOORDT2 (INT) - YT2
I.VELT1 (INT) - 1_VEL
Y.VELT1 (INT) a YVEL
ITERATIONS (INT) a TEST-ITERATIONS
I3NOISEVARIANCE (INT) . I-NOISE
YNOISEVARIANCE (IIT) - YNOISE
MAIFALSEALARMS (INT) - MkXIALALiMS

Interfaces:
SCANFRAME-OUT (OUT-PORT)

END

Figure 5.7 INTERSECTING TRACKS GENERATOR Primitive Module Structure.

is important to the Abstract Primitive Module Behavior activity since only modules of

PRIMITIVE type have behaviors needing abstraction.

The domain model file provides information about the primitive's relations, inter-

faces, and parameters. Rumbaugh dynamic models and functional models abstract the

primitive module's behavior. The knowledge base needs representations of both the do-

main model and the entire collection of primitive module definitions. Reverse engineering

the existing primitive module behaviors was considered unnecessary.

The functional model shown in Figure 5.8 abstracts the behavior of the INTERSECTING

TRACKS GENERATOR primitive module. The Initialize sets up the data for the two targets

using several of the primitive module's parameters (including the target coordinates and

initial target velocities). The Produce Noisy Measures generates a new position for each

target using the target's initial state, the target's initial velocity, and the current scan

iteration (e.g., first scan gives initial location). Noise is also added as specified in the

parameters. The Add False Alarms includes additional tdrget points (false alarms) with

5-9

of this primitive.

A much more complex functional model could have been generated to define the

behavior of the INTERSECTING TRACKS GENERATOR, but the behavior is simple enough to

avoid complex definitions. Obviously, spending more effort defining a primitive module's

behavior results in less effort required to implement the behavior in CIDL.

5.6 Implementing the Intersecting Tracks Generator

There are many ways to implement the INTERSECTING TRACKS GENERATOR using

CIDL. The Implement Library Module procedure must support the relations, interfaces,

and parameters identified in the domain model. The procedure must also support the

synthesis engine of APTAS by updating the Synthesis Support category of the knowledge

base.

The pseudo code shown in Figure 5.9 describes the CIDL implementation of the

INTERSECTING TRACKS GENERATOR. An existing MATLAB (12) implementation of this

module was used as a guide for creating and testing the CIDL implementation. A tool

that transforms implementations from other source languages into CDOL would be a great

help during this activity.

The INTERSECTING TRACKS GENERATOR implementation was placed within the Li-

brary Modules category of the APTAS Knowledge Base. APTAS expects Library Modules

in the include directory of the domain. Both the primitive's CIDL source code and its

5-10

Initialize:
tgtlpre - [XCOORDTi IXVELT1 YCOOID.Ti ¥_VEL.T11
tgt2pre - [X-COORDT2 IVELT1 ¥_COORDT2 -T¥VEL_T1]

Add Noisy Measures:
tgtlcur - tgtlpre * Vel(scan) + Noise
tgt2cur a tgtlpre * Vel(scan) + Noise

Add False Alarms:
ScanFrameOut - [tgtlcur tgt2cur Alarms]

Figure 5.9 INTERSECTING TRACKS GENERATOR Primitive Module Implementation.

compiled file belong in this directory. The Synthesis Support file of the knowledge base

must also be updated. Both of these tasks could be automated, however, these tasks were

performed manually.

5.7 Evaluating the Tracking Domain Development

Once the primitive module implementations have been added to the knowledge base,

the population process is almost finished (at least with the current iteration of the process).

One important activity still remains - evaluation.

The knowledge base should work properly (be complete and consistent) before mod-

ifying the APTAS system's working knowledge base. As mentioned in Section 4.5.5, the

Domain Specialists and Knowledge Engineer can describe evaluation procedures to check

the consistency and completeness of each activity's results (domain model file, knowledge

base files, abstract behaviors, and implementations). Evaluation procedures indicate any

problems in a particular stage of domain development. Any indicated problems should be

corrected before using the new knowledge base files. These procedures could also indicate

when to stop an activity at each stage of the process.

After making the knowledge base consistent (and complete), the Knowledge Engineer

can simulate several standard tracker simulations that exercise both new and old features

of the knowledge base. This final testing should verify the integrity of the new knowledge

base files (i.e., it still supports the applications that were composed prior to changing the

knowledge base). After these last tests, the Knowledge Engineer can replace the APTAS

system's Knowledge Base fies with the new files.

5-11

5.7.1 Evaluating the Tracking Domain Model. Evaluating the domain model file

involves checking that all conditions shown in Figure 5.10 are true. The conditions are

Vm[m E ModuleObjs = -.30[0 E ModuleObjs
A o#m
A Name(o) = Name(m)]]

Vm[m E ModuleObja • (TypeOfModule(m) = ENV
V TypeOfModule(m) = SUB
V TypeOfModule(m) = PRI)j

Vm[(m E ModuleObjs
A TypeOfModule(m) i PRI) = Parameters(m) =

Vm[m E ModuleObja Viii E Interfaces(m)
A (TypeOflnterf(i) = IN-PORT

V TypeOflnterf(i) = OUTPORT)]J

Vm[m E ModuleObja = Vr[r E Relations(m)
A (TypeOfRel(r) = SYNC

V TypeOfRel(r) = ASYNC
V TypeOfRel(r) = ALIAS
V TypeOfRel(r) = FORWARD-FUNCTION
V TypeOfRel(r) = APPLY-FUNCTION
V TypeOfRel(r) = PARAMETERMODULE)J]

3!m[(m E ModuleObis A TxpeOfModuie(m) = ENV)))

Figure 5.10 Domain Model Evaluation Conditions.

derived from the domain model structure. Each module must have a unique name and

must be one of the three valid module types (environment, submodule, or primitive). Only

primitive modules may have parameters. Interfaces must be either in-ports or out-ports.

Relations must be one of the six valid relation types (see Section 4.3.2). All source modules

and target modules of the relations must exist (this condition not shown in Figure 5.10).

One and only one module is the environment module. The domain model is complete

whenever it passes these tests (i.e., i. is complete whenever it is consistent).

5.7.2 Evaluating the Tracking Knowledge Base. Evaluating the knowledge base

files would involve checking several categories that certain conditions are true. The con-

ditions are derived from the knowledge base structure (similar to conditions derived from

domain model structure). The categories involved for this particular evaluation include

the Specification Taxonomy, the Architecture Construction Rules, the Type Descriptions,

5-12

the Library Components Structure, and the Display Conventions. Ideally, the Knowledge

Engineer would not have to evaluate the knowledge base files if the domain model file

passes evaluation and a correct forward transformation is guaranteed.

In the Specification Taxonomy, there must be at least one level. Each level must

have a unique name, a title string, and a flag symbolizing the level's initial state. A level

may have any number of questions, but each question must have a string representing the

information required. Questions may have a condition expression and must be one of four

valid question types. STACK and CHECKLIST questions must have at least one response.

Each response has a response string and may have actions. NUMERIC questions must have

"a total response range and may have some numeric responses. Each numeric response has

"a number range within the total range and may have actions. TEXT questions must have

"a maximum string size and may have actions. Each question type may have some default

response (or responses for CHECKLIST questions). All actions must be one of the four valid

types. Variable set actions must have a variable name and a value. Save value actions

must have a variable name. Activate and deactivate level actions must have a level name

that corresponds to an existing level.

In the Architecture Construction Rules, there must be at least one module. Each

module must have a unique name and may have submodules, interface declarations, and

relations. Submodules must have an instance name (not necessarily unique) and the name

of an existing module or primitive. If the submodule is a primitive, then the submodule

must have a list of parameter assignments (name and value pairs). Submodules may

have condition expressions. Interface declarations must have a name (unique within the

module), an interface type (either in or out port), and some initial value. Relations must

have a name (unique within the module), a valid relation type, the names of existing source

and target modules or interfaces, and some initial value (or module function).

The Type Descriptions must have at least one description. Each description must

have a unique name and may have some description text. Names may identify existing

modules or primitives. However, names may also identify global data types, interface types,

or relation types.

5-13

The Library Component Structures must have the name of the domain and at least

one scope (primitive module structure). Scopes must have a unique name and may have

declarations and relations. Declarations must have a name (unique within the scope) and a

valid data type or interface type. Declarations may have either an expression definition or

a list of parameters. Relations must have a name (unique within the scope), a valid relation

type, and the names of existing source and target modules or interfaces. Relations may

have an expression definition. Notice that all the parameters identified within a submodule

(in the Architecture Construction Rules) must have declarations.

The Display Conventions must have the name of the domain and at least one driver.

Drivers may be either type display drivers, relation drivers, or constraint drivers. Type

display drivers must have at least one display rule and a relation display flag. Display

rules must have a unique name, an icon identifier, and an icon position. Display rules may

have an icon label position, an icon label content, and some content display rule. Relation

drivers must have a line width, source symbol, end symbol, an argument flag, and at least

one relation pair (e.g. module to module, out.port to in.port). Relation drivers may have

a label position and content, line color, as well as dash number and lengths.

One final evaluation checks whether variables tested in the question and submodule

conditions exist within some variable set action. This particular check would complete the

knowledge base evaluation.

5.7.3 Evaluating the Primitive Module Abstractions. No procedure automatically

evaluates primitive module abstractions. Automatic evaluation requires the abstraction

be available to a program. The abstraction technique involves functional and dynamic

models that may exist only on paper or within some graphics package. Because there is

no abstraction environment within Software Refinery, primitive module abstractions must

be evaluated manually.

An evaluation procedure uses the structure of functional and dynamic models (as de-

fined in the Rumbaugh Object Modeling Technique) to define consistency conditions. Each

primitive module abstraction passes evaluation whenever all conditions are true. Because

of the simplicity of the INTERSECTING TRACKS GENERATOR primitive module abstraction,

5-14

all the possible conditions were not necessary, nor were any identified. The abstraction

was not formally evaluated.

5.7.4 Evaluating the Library Module Implementations. Evaluating primitive

module implementations is similar to common program execution testing. Implementations

are written in CIDL, and the APTAS system provides a CIDL programming environment

(see Section 4.5.4). Obviously, the evaluation of a primitive module implementation fails if

the module does not compile. Because many primitive modules may depend on data from

other primitive modules, evaluation procedures may involve the creation of code "stubs"

or test data files. However, the implementation would need no evaluation at all if the

transformation was guaranteed to maintain the correctness of a primitive abstraction that

passed its evaluation. An existing primitive module implementation was modified and,

therefore, was not extensively tested.

5.8 Summary

Procedures were developed for each of the population process activities (some were

automated, while others remain manual). The Create/Evolve Domain Model procedure

involved building a domain model file using a specific ctomain model grammar. The Design

Domain Taxonomy and Coding Knowledge Base procedure is entirely automated. It trans-

forms the domain model file into several knowledge base files. The Abstract Primitive

Module Behavior procedure involves using Rumbaugh's Object Modeling Technique to

build functional and dynamic models for each primitive module identified in the domain

model. The Implement Library Modules procedure involves programming the behavior

abstractions in the CIDL programming language. These last two activities (abstraction

and implementation) were identified as the most tedious tasks of the population process.

The Evaluate Domain Development included two automatic procedures to check the do-

main model and knowledge base. The evaluation would also include procedures to test the

abstractions and implementations. However, only the complexities of these test procedures

were identified, and no formal procedures were developed.

5-15

VI. Research Conclusions

6.1 Objectives

Many knowledge-based software engineering capabilities depend on the information

stored in the knowledge base. The knowledge base organizes information about a modeled

application domain into several categories. Al this information must either already exist

in the knowledge base or some method must exist to store new information.

This thesis had one primary research objective: document and demonstrate a formal

population process to solve the following problem:

There is currently no understood formal process to efficiently capture
and store new domain information within the APTAS Knowledge
Base.

There were also two secondary objectives: study the APTAS Knowledge Base and outline

a general population process that captures several important characteristics applying to

many knowledge-based software engineering systems.

Section 6.2 summarizes the accomplishments of this thesis. Section 6.3 draws several

conclusions concerning this thesis research. Section 6.4 suggests several research topics

directly related to our accomplishments.

6.2 Accomplishments

This thesis proposed a general knowledge base population process outline that ap-

plies to many knowledge-based software engineering systems (38). Using the general pro-

cess outline, a formal population process was developed to populate the knowledge base of

APTAS. This formal process was documented and demonstrated by storing new informa-

tion from the radar tracking domain into the knowledge base. Several procedures (some

automatic and some manual) were implemented during the formal process demonstration.

The development of the formal process also depended on relationships between knowledge

categories and unique information stored in each category that was identified by studying

the knowledge base of APTAS. This thesis:

6-1

1. Proposed a general knowledge base population process outline in Sec-

tion 3.5. This process outline integrates and expands methods proposed by Prieto-

Diaz (30, 31), Arango (3), McCain (25), and others. The outline consists of five

activities that capture the three key stages of knowledge base population: Domain

Analysis, Domain Implementation, and Evaluation. These three stages are described

as follows:

"* Domain Analysis: A population process generally begins with the creation

or evolution of a domain model using some domain modeling approach (Cre-

ate/Evolve Domain Model activity) and the abstraction of component behaviors

(Abstract Component Behaviors activity). The activities often vary depending

on the type of application domain being analyzed and its complexity. The Do-

main Engineer can conceivably perform these two activities independent of the

knowledge-based software engineering system requirements.

"* Domain Implementation: The process transforms specific structures in the do-

main model into corresponding structures in the knowledge base (Design Reuse

Infrastructure activity). The process transforms the abstract component behav-

ior definitions into reusable component implementations stored in the knowledge

base (Implement Reusable Components activity). The Software Engineer per-

forms these two activities to produce information that is stored directly in the

knowledge-based software engineering system. These activities are therefore

predominantly dependent of the system requirements.

"* Evaluation and Feedback. The process evaluates the results of the other four

activities to determine whether any additional changes are necessary before

using the new reuse infrastructure (Evaluate Domain Development activity).

Both engineers (Domain Engineer and Software Engineer) use this activity to

indicate inconsistencies in their activities results and to determine whether an

activity is completed.

2. Studied the APTAS Knowledge Base in Section 4.3. The knowledge base

consists of seven categories of information used by particular stages of application

6-2

composition. Each category contains unique information and has its own grammar

(see Appendix B). The associations between the seven categories are repeated in

Figure 6.1 with the unique information displayed in bold face text (CIDL implemen-

tations are unique to the Library Modules category, and code synthesis rules are

unique to the Coding Rules category).--
A atonomy [IoenKenilowC

sitigff c iv .Te fs m itnti

tur ws epesntd y heDoai Txonomyand Coig nwedeBsemn

FOM ~~~ po oba

Crkaa TppM

P mm VWWO. MP,"A SNUCK

rua c p werein r nm condomaine

Ru slecte (thedd radar trcing rdoman) ndescoe (track-whil-san, ucltipe-

Figurfte 6.1TAsssoition ofnfora dfntion Between knowledge Base Categotures.er

3.DF mne orma knowle Mdgebulppltinpoessfo APTWA con-

reuabl co ponenswre repreente by"P- lirrTodlsOnMplctindmi

used to formalize the second two process activities. The last activity was formalized

6-3

using the description of the four formalized activities. Section 3.5 described these

five activities as follows:

"Create/Evolve Domain Model This activity results in an object model of the

radar tracking domain using the Rumbaugh Object Modeling Technique (34).

Objects represent modules and elicitation forms. Modules are composed of

several other objects, including parameters, interfaces, relations, submodules,

and icons. Forms are composed of question objects. Domain Specialists perform

this activity.

" Abstract Primitive Module Behaviorr. This activity results in dynamic and

functional models of primitive modules using the Rumbaugh Object Model-

ing Technique. Primitive modules are identified (using the domain model) as

those modules that have parameters (and no aubmodules). Domain Specialists

also perform this activity.

" Design Domain Taxonomy and Coding Knowledge Base: This activity results

in five knowledge base files representing the information captured in the do-

main model. Domain model structures are transformed into their correspond-

ing knowledge base structures using a set of mapping predicates. For instance,

every primitive module identified in the domain model corresponds to a Li-

brary Component Structure in the knowledge base. The Knowledge Engineer

performs this activity.

" Implement Library Moduler. This activity results in CIDL implementations of

the primitive modules. The dynamic and functional models are translated into

CIDL, manually, using a programming environment provided by the APTAS

system. The Knowledge Engineer performs this activity.

" Evaluate Domain Development This activity provides feedback about the re-

sults of the other process activities. Domain Specialists receive evaluations

on the consistency and completion status of the domain model and primitive

module abstractions. The Knowledge Engineer receives evaluations on the con-

sistency and completion status of the knowledge base files and primitive module

6-4

implementations. Procedures to evaluate the domain model and knowledge base

files are easy to automate, while procedures to evaluate the primitive module

abstractions and implementations are not easy to automate.

4. Demonstrated the formal knowledge base population process in Chapter V.

Each activity of the formal process was implemented using information from the

existing knowledge base, as well as some new domain information obtained from

tracking experts. The demonstration:

"* Created a tracking domain model The current contents of the Tracking Tax-

onomy and Coding Knowledge Base were reverse engineered into a tracking

domain model. The formal process requires a domain model be created as the

first step to knowledge base population. Because the knowledge base already

contained information, the tracking domain model resulting from the reverse

engineering directly supported this information. This reverse engineering pro-

cedure demonstrated part of the Create/Evolve Domain Model activity.

"* Transformed the domain medel into knowledge base files. A set of predicates

were developed that define the mapping between objects in the domain model

and structures in the knowledge base. Using these predicates, the tracking

domain model was transformed into its corresponding knowledge base files. Al-

though not identical in style, the existing knowledge base files and those trans-

formed from the tracking domain model were behaviorally equivalent. This

transformation procedure demonstrated the Design Domain Taxonomy and Cod-

ing Knowledge Base activity.

"* Evolved the tracking domain model by adding new domain information. A prim-

itive module was added by updating the tracking domain model file with a new

primitive module description and an elicitation form that sets the primitive's pa-

rameters. An existing module and elicitation form were also modified to support

the inclusion of the new primitive module. This update procedure demonstrated

the other part of the Create/Evolve Domain Model activity.

6-5

"* Abstracted the behavior of a new primitive module. A very simple functional

model was developed to define the behavior of the primitive module added

to the tracking domain model. This abstraction procedure demonstrated the

Abstract Primitive Module Behaviors activity.

"* Implemented a new primitive module. A CIDL implementation was developed

to represent the functional model of the new primitive module. The knowledge

base was updated with the new CIDL implementation. This implementation

procedure demonstrated the Implement Library Modules activity.

"* Evaluated the new tracking domain model A set of predicates were developed

to evaluate the consistency of the tracking domain model. The predicates were

derived from the domain model structure. Automatic evaluation of the evolved

tracking domain model was performed using a procedure based on these predi-

cates. This evaluation procedure demonstrated the Evaluate Domain Develop-

ment activity.

6.3 Conclusions

6.3.1 General Population Process Outline Conclusions. The following conclusions

resulted from the general process outline:

1. Object-oriented methods support the process. The general process was devel-

oped for a class of systems that have an object-oriented knowledge base (Section 3.2).

Therefore, object-oriented software development methods can support domain imple-

mentation (Design Reuse Infrastructure and Implement Reusable Components activ-

ities). As the formal process demonstrated, object-oriented techniques also support

domain analysis (Create/Evolve Domain Model and Abstract Component Behaviors

activities). Building and evolving the domain model was similar to creating an object

model for a single application (although at a much larger scale). Abstracting com-

ponent behaviors and reusable component implementations was identical to creating

dynamic and functional models for a single application.

6-6

2. Process conceivably benefits from improvements to software development

methods. The process does not mandate a particular development method and is

therefore not limited to an existing method. A population processes instantiated from

the general process outline can conceivably accommodate improvements to existing

methods (e.g., improvements to Rumbaugh's technique). The process can conceiv-

ably accommodate new software development methods (e.g., new object-oriented

methods).

3. Domains can be developed incrementally. Separating the domain analysis into

two activities allows the performance of each activity to progress at a different pace.

The tracking domain model was not required to have all the dynamic and functional

models (i.e., primitive module behavior definitions) before being transformed into

knowledge base files. Therefore, domains with a large set of components would not

require all their definitions prior to designing a reuse infrastructure. Component

behaviors could be abstracted as required.

4. Domains can be transferred between systems. The general process outline

separates the results of domain analysis from the particular system requirements.

Therefore, the domain model and component abstractions generated during domain

analysis could be used by other systems. A different set of predicates to transform the

tracking domain model could conceivably produce knowledge base files for a system

other than APTAS.

6.3.2 Formal Population Process Conclusions. The following conclusions resulted

from the development and demonstration of the formal knowledge base population process:

1. Population effort can be reduced. The transformation procedure demonstrated

that information repeated in several categories of the Tracking Taxonomy and Coding

Knowledge Base could be automatically reproduced from the tracking domain model.

Therefore, the Domain Specialists only need to add or modify the information once

(in the domain model).

2. Process activities have different levels of effort. The evolution of the tracking

domain model demonstrated that the level of effort depends partly on the specific

6-7

population process activity. Adding the new primitive to the tracking domain model

was relatively simple (as was generating the corresponding knowledge base files).

However, abstracting the primitive module behavior and implementing it in CIDL

required much more effort.

3. Process can enforce standards. The transformation procedure demonstrated

that standard display conventions, although not strictly enforced by the knowledge

base structure, can be enforced during transformation. The primitive module added

during the evolution of the tracking domain model was transformed with a standard

display representation in the Display Conventions category of the knowledge base.

6.4 Future Knowledge Base Population Research Topics

Future research of the knowledge base population problem should include the follow-

ing topics:

1. Further define and refine the general process. Although a general process

was developed, additional research could decompose each of the activities in more

detail. For instance, the Create/Evolve Domain Model activity might decompose into

more concrete stages defining model structure, component hierarchy, and component

relationships. Decomposing each activity might produce additional constraints to

the applicability of the process on certain domains and systems.

2. Do domain analysis on simple application domains. The population process

requires expert knowledge of an application domain. Domain information should

originate from an expert through a formal knowledge acquisition process. Some appli-

cation domains may require only a few components to sufficiently build applications

(e.g., logic circuits could be built using only simple logic gates). When developing

the domain model and abstracting the component behaviors of these more simple

domains, the first two population activities could be combined into a single domain

analysis activity. Such domains would be ideal research areas to develop domain

modeling and component behavior abstraction tools.

6-8

3. Develop knowledge base population tools. Additional research into knowledge

base population could result in the development of more population tools and utilities.

Cecil and Fullenkamp (6) observed that an Object-Oriented Database Management

System could archive domain artifacts (e.g., reuse infrastructures and component

implementations). As more object-oriented utilities are developed, software engineers

could integrate them into the knowledge base population process. Utilities that

capture object models could help construct and evolve domain models and could

help transform models into reuse infrastructures. Utilities that capture functional

and dynamic models could help define component behaviors and could even help

implement components.

4. Build application test sets. It is no small matter to make sure applications still

execute as expected when making changes to the knowledge base files. A set of appli-

cations that test the operation of the knowledge base over significant characteristics

should be maintained. As the Knowledge Engineer makes changes to the knowledge

base files, new applications that test any new characteristics should be added to the

existing test application set. Using the changed knowledge base files to successfully

synthesize code and simulate expected behaviors for that application test set would

significantly boost the confidence in the new files. Maintaining such a test set would

be easier if done in conjunction with knowledge base updates. However, developing

and supporting the initial test set is a major undertaking and could be an area of

future research efforts.

5. Transfer domains between systems. As mentioned in the conclusions above,

domain analysis results can be independent of system requirements. Therefore, the

results of a domain analysis can be transferred between two or more systems. For

instance, the information captured by the tracking domain model should transfer

to another system (like Architect). This knowledge transfer could result in better

domain models and more generic transformation procedures.

6-9

6.5 Final Remarks

Overall, this research effort identified several of the general characteristics of knowl-

edge base population. Although the general process was developed for Domain-Oriented

Application Composition Systems, the concepts introduced by this research could apply

to other knowledge-based software engineering systems.

6-10

Appendix A. Domain Model

A. 1 Domain Model Grammar

The first activity of the knowledge base population process (developed in Section 4.5.1)

involves the creation and evolution of a domain model. A formal domain model structure

is required as part of this activity. The ideal domain model structure would describe a

domain language. The grammar in Figure A-1 represents the domain model structure.

Domain~odel N ame "model" "1structure" ":" NoduleObj*
("elicitation" ":", Formflbj+}

Moduleflbj - "module" lame "C' TypeOfilodule "1)"

("description" 11:" DescOf~odule}
{"icon" 11:" IconObj} {"parameters" I$:" ParameterObj.}
("interfaces" "1:" InterfaceObje}
{"relations" "f:" RelationObj)
{"1submodules" Is:" SublodRel.) "end"

IconObj -IconDesc

Parameterflbj N= ame "C" TypeOfParam ") ""ParamvaJlue}

InterfacoObj N- ame "0" Typeaflnterf ") ""Interflalue}

IelationObj N ame "C" TypeOfRel {P:" RelationValuel) ")"f
"1from" "1:" SourceComp "to" ":" TargetCoup

Sublodlel N- ame "in-&" Sub~odType ("guard" "':" SubGuard}
ForuObj ;u"form" Name (I"[, "initialize" "I") "Otitle" ":" TitleOfForm

{"questions" "2:" Quention~bj+} "end"
QuestionObj -TextQuestion I lumericQuestion I StackQuestion I

ChecklistQuestion
TextQuestion '$"text"$ ":" Ino~licited XaxLength {"guard" ":" QuestCond}

("default" "1:" DefaultChoice) {"actionh" ":" ActionkObj+}
lumericQuestion -"numeric" "1:" InfoElicited "E" Range~in "," Range~ax "I"

("guard" "1:" ýJuestCond) ("default" "0" DefaultChoice)
("responses" "1:" ResponseObj4)

StackQuestion -"stack" ":"1 Info~licited ("guard" "1:" QuestCond)
{"default" "O" DefaultChoice)
("responses" "0" ResponseObj.}

ChecklistQuestion -"checklist" "0" In~foElicited ("guard" ":" QuestCond)
("default" "0" "(" DefaultChoiceu4)"

("responses" "1:" Respouseflbj+)
Responseflbj -ResponseStr ("actions" "0" ActionObj+)
RespoussObj :: "9(" Respifin ","1 Resp~ax "I" f"actions" ":"1 ActionObJ4}
ActionObj :-VariableSotUction I SaveValueAction I

Activiatelction I Deactivateiction
Variable~etAction -"variable-noet" "("' ActionVar "," Actionlal "1)"

SaveValueAction :: "save-value" "(1" ActionVar "I)"

ActivateAction ::"activate-.level" "(" ActionLevel ")"

Detactivateiction :"deactivate-level" "(" ActionLovel. ")"

Figure A.1 Domain Model Grammar.

A-1

A domain language was developed with the DIALECT tool using the domain model

grammar. This particular domain language is not related to the attributes of a specific

domain and could be used as a language to model many different domains (particularly

when modeling domains for the APTAS system).

A.2 Creating the Initial Domain Model File

As described in Section 5.2, reverse engineering the knowledge base files into a do-

main model consisted of the three functions shown in Figure A.2. The first function uses

BSbuc~twe DWoMWnPSWdeSbuj

KKASfe"Inmed Kt~ Domfrinu Wdb nkwb

[ru•wB udm1 Br to x W

Figure A.2 Reverse Engineering Procedure.

four grammars to create an abstract syntax tree in the REFINE object base. The com-

plete knowledge base grammars are defined in Appendix B. The second function uses the

knowledge base syntax tree to create a domain model abstract syntax tree. '"'ae structure

of the domain model abstract syntax tree uses the grammar defined in Figure A.1. The

third function creates a domain model file from its abstract syntax tree.

A REFINE procedure reverse engineers the knowledge base files. The procedure

loads the four knowledge base grammars, loads the reverse transformation procedures,

and creates the domain model file. However, explicit pathnames and filenames were uaed

within the REFINE code (e.g., resulting domain model file is tracker-domain. txt). One

should modify the reverse transformation procedure to reflect the desired pathnames and

filenames. If you are interested in the REFINE code, see Appendix C.

A.2.1 Parse Knowledge Base Files. Four grammars, each described in Ap-

pendix B, were used to parse the necessary information from the knowledge base files.

The first knowledge base grammar defines the Specification Taxonomy and Architecture

A-2

Construction Rules. Using this grammar and the information stored in the global .form

file, one may parse the sequence of form (Level) structures and the sequence of module

structures into the object base.

The second knowledge base grammar defines the Library Component Structures.

Using this grammar and the information stored in the global. gsdl-1 file, one may parse

the sequence of primitive module (Scope) structures into the object base.

The third knowledge base grammar defines the Display Conventions. Using this

grammar and the information stored in the global. gsdl-t fie, one may parse the sequence

of display convention (Driver) structures into the object base.

The fourth knowledge base grammar defines the Type Descriptions. Using this gram-

mar and the information stored in the global. desc file, one may parse the sequence of

type description (Desc) structures into the object base.

A.2.2 Reverse Transformation. With the four knowledge base files parsed into

the REFINE object base, the knowledge base abstract syntax tree can be transformed into

a domain model abstract syntax tree. This transformation creates a new domain model

abstract syntax tree instead of modifying the knowledge base abstract syntax tree. The

reverse transformation is based on the conditions described in Section 5.2 and must use

the domain model grammar and the knowledge base grammars.

A.2.3 Write Domain Model File. The domain model abstract syntax tree can

be output into the domain model file. The output function must ensure the file resulting

from the domain model abstract syntax tree corresponds to the domain model grammar.

The resulting file is the initial domain model and can be evolved using the domain model

grammar.

A.3 Evolving the Domain Model

Performing the evolution to the tracking domain model involved defining the new

information, identifying the necessary changes, and making them. The population pro-

cess was demonstrated by adding a new primitive module. The new primitive, called

A-3

INTERSECTING TRACKS GENERATOR, provides two targets with intersecting tracks. The

Tracking Engineer may select the original SENSOR MODEL primitive, by default, or this new

primitive. Several of the necessary changes were identified.

A.3.1 Update TRACKERENVIRONMENT Module Definition. The initial domain

model file defines the TRACKERENVIRONNENT module with a SENSOR-DATA submodule of

SENSOR-MODEL type. This original module architecture is shown in Figure A.3. This

definition was modified to include the option of specifying a SENSOR-DATA submodule of

INTERSECTINGTRACKS-GENERATOR type. The modified module architecture is shown in

Figure A.4 (changes are highlighted with -- <<<).

MODULE TRACKER._ENVIRONNENT (ENVIRONMENT)
Relations:

SENSORSCAI._FRAMETOTRACKER (ASYTC : "GonericScanlrame")
from: Sensor-Data.scaa.frame.out to: Tracker.scan.fraue.in

OPERATORQUERYTOTRACKER (ASYEC : "GenericQuery")
from: Output.query.out to: Tracker.user.query.in

TRACKERDATATODISPLAY (ASTUC : "GenericTrackData")
from: Tracker.display-data.out to: Output.reply.in

SubModules:
S.ISOR._DATA is-a SEISOR-MODEL
TRACKER is-a TARGET-TRACKER

Guard: DEFAULT-TRACKER ! "false"

TRACKER is-a IEW-TRACKER
Guard: DEFAULT-TRACKER : "true"

OUTPUT is-a OUTPUTDISPLAY
END

Figure A.3 Original TRACKERLENVIRONMENT Module Architecture.

Note that a new variable has been defined, DEFAULT-TARGET, that determines which

submodule type has been selected. This variable must be set using a question form (i.e.,

need to modify the elicitation section of the domain model file).

A.3.2 Update TRACKING Elicitation Form. A new question was added to the

TRACKING elicitation form to set the DEFAULT-TARGET variable. The default selection results

in the original selection (i.e., SENSOR.MODEL type). The modification is represented in

Figure A.5.

A-4

MODULE TRACKU..KT.IIONNEIT (ENVIRONMZNT)

Sub~odules:
SEUSOIDATA is-a SUlSOn.MODEL -- <<<

Guard: DEFAULTTAhGZT !- "false" -- <<<
SENSOR.DATA is-a IUTEKSECTINGTRACKS-.GEUATO -- <<<

Guard: DEFAULT-TARGET - "false" -- <<<
TACKER is-a TUAGET-TRACKER

Guard: DEFAULT-.TRACKER to "false"
TUACKER is-a hELThACKER

Guard: DEFAULT.TRACKER !w "true"

OUTPUT is-a OUTPUT-DISPLAY

,END

Figure A.4 New TRACKERENVIROIMENT Module Architecture.

PORN /TACKIl [INITIALIZEJ

STACK: "Default Target Model?" --- <<<
Default: 0 --- <<<
Responses: --- <<<

"true" --- <<
Actions: --- <<<

variableoset(DEFAULT.TAPUET, "true") --- <<<
deactivatnoloveel(/TRACKING/TARGET.MODELS) --- <<<

",Ofalseo, --- <<<
Actions: --- <<<

variable-set(DEFAULT.TARGET, "false") --- <<<
activate..level(/TRACKING/TARGET_.ODELS) --- <<<

UID

Figure A.5 New Question in TRACKER Form.

Note that a new form (level) was also created to further define the specific behavior

of the new primitive module. However, a primitive module structure is needed before

defining the new form.

A.3.3 Create INTERSECTINGTRACKSGENERATOR Module Definition. The new

primitive module must have a definition in the domain model file. The definition given in

Section 5.4 is repeated in Figure A.6.

This definition introduces ten integer parameters (e.g., XCOORDTI) that must be

set by the Tracking Engineer to specify the behavior of the primitive module. These

A-5

MODULE IBTEUUECTIBG.-TACKSGJENKAT0U (PRIMITIVE)

Description: "This module implements Lang Hong's routine for
generating noisy target data with false alarms.
This module first generates two perfect
intersecting tracks and then adds noise with a
normal distribution to obtain more realistic
target observations. Uniformly distributed
false alarms within predetermined gates about
the track are then added."

Icon: MED.BLUE_.ECT
Parameters:

IXCOORDT1 (INT) - ITI

YCOORD.T1 (INT) a YT1
ICOORD.T2 (I1T) - XT2
Y_COORD.T2 (Irr) - T_T2
I.VELT1 (Irr) - XVEL
Y_VEL_T1 (INT) a YVEL
ITERATIONS (Ir) a TESTITrgATIOBS
I_.OISEVARIAICE (Ir) a I-NOISE
YNOISEVARIANCE (i1T) - YIOISE

KAXFALSEALARNS (1IT) -MAXALARMS
Interfaces:

SCANFRAKEOUT (OUT-PORT)
EID

Figure A.6 INTERSECTING TRACKS GENERATOR Primitive Module Structure.

parameters are directly related to the abstract behavior definition and functional imple-

mentation of the primitive module. The coordinate parameter values provide the true

location of each target. The velocity parameter values provide the necessary information

to calculate each target's subsequent locations. Other parameter values provide the num-

ber of positions to calculate, the variance between reported location and true location, and

the number of possible false targets generated.

A.3.-4 Create TRACKINGTARGETMODELS Elicitation Form. The new elicitation

form is defined a Figure A.7. Nine of the ten parameters are set by responses made

through this form (the value of the tenth parameter, the ITERATIONS, is set through the

TRACKING form). Each of these parameters are integer values that would ideally range from

-oo to +oo (except for noise and false alarms); however, APTAS requires a finite range

specification.

A-6

FORK /ThACKING/TAIGETHODELS
Title: "Intersecting Target Characteristics"

Questions:
NUMERIC : "I Coordinate of Target 1" [-99999. 99999]

Default: 2000
Responses:

[-99999, 99999] Actions: saveovaluo(X.Tl)
NUMERIC : "Y Coordinate of Target 1" [-99999, 99999]

Default: 11000
Responses:

(-99999, 99999] Actions: save.value(YTi)
NUMERIC : "I Coordinate of Target 2" E-99999, 99999]

Default: 2000
Responses:

[-99999, 99999] Actions: save.value(IT2)
NUMERIC : "' Coordinate of Target 2" [-99999, 99999]

Default: 10000
Responses:

[-99999, 99999] Actions: save.value(TT2)
NUMERIC : "1 Velocity for both Targets" [-99999, 99999]

Default: 25
Responses:

[-99999, 99999] Actions: saveyvalue(I_ EL)
NUMERIC : "T Velocity both Target." [-99999, 99999]

Default: 5

Responses:
[-99999, 99999] Actions: save-value(T.VEL)

NUMERIC : "Z Noise" [0. 99999]

Default: 100
Responses:

[0, 99999] Actions: save.value(INOISE)
NUMERIC : 'IT Noise" [0, 99999]

Default: 15000

Responses:
[0, 99999] Actions: saveovalue(y.NOISE)

NUMERIC : "Maximm N]mber of False Alarms (per scan)" [0, 99]
Default: 3
Responses:

[0, 99] Actions: save.value(RAX&.ALAJS)
END

Figure A.7 TRACKINGTARGETJIODELS Form Definition.

A-7

A.4 Evaluating the Domain Model

Only the actions involved with creating the initial domain model and adding new

information have been demonstrated. The process demonstration was unique because it

started with information already in the knowledge base that had no corresponding domain

model. Creating a domain model from scratch (i.e., no existing knowledge base files) would

involve developing a brand new domain model file that follows the domain model grammar.

Whenever the Domain Specialists are satisfied with the state of the domain model file,

they should evaluate it for consistency to the domain model structure. Several predicates

were defined in Section 5.7.1 that must be true for the domain model file to pass its

evaluation. These conditions are repeated in Figure A.8.

Vm[m e ModuleObja f -3o[o E ModuleObja
A oim
A Name(o) = Name(m)]J

Vm(m E ModuleObjf t (TypeOfModule(m) = ENV
V TypeOfModule(m) = SUB
V TypeOfModvde(m) = PRI)I

Vm[(m E ModuleObjs
A TypeOfModule(m) # PRI) = Parametera(m) =

Vmnm E ModuleObjfts Vi(i E Interfaces(m)
A (TypeOflnterf(-) = IN-PORT

V TypeOflnterf(i) = OUT.PORT)Jl

Vm[m E ModuleObja f Vr[r E Relatioru(m)
A (TypeOfRel(r) = SYNC

V TypeOfRel(r) = ASYNC
V TgpeOfRei(r) = ALIAS
V TypeOfRel(r) = FORWARD-FUNCTION
V TypeOfRel(r) = APPLY-FUNCTION
V TypeOfRel(r) = PARAMETER..MODULE)]]

3!m[(m E ModdeObjs A TypeOfModule(m) = ENV)])

Figure A.8 Domain Model Evaluation Conditions.

When the domain model passes its evaluation, one may transform the model into its

corresponding knowledge base files. Appendix B describes the procedure used to transform

a domain model file into its corresponding knowledge base files.

A-8

Appendix B. APTAS and its Knowledge Base

B.1 Knowledge Base Grammars

Section 4.3 described the knowledge base structure in great detail. Five of the seven

knowledge base categories were directly related to information captured in the domain

model. An object model of these five categories, showing their structure, is shown in

Figure B.1. There is a great deal of information captured in this picture of the knowledge

a-u-a

Figure B.1 APTAS Knowledge Base Structure.

base structure. Each category has its own structure, and except for two categories that

share a grammar, each has its own grammar. The Architecture Construction Rules and

Specification Taxonomy share a grammar because their information is stored in the same

B-i

knowledge base file. Each of these grammars was developed using the DIALECT tool of

REFINE. See Appendix C for the actual implementation of these grammars.

B.1.1 Specification Taxonomy and Architecture Construction Rules. As described

in Sections 4.3.1 and 4.3.2, the Specification Taxonomy and Architecture Construction

Rules categories have a formal structure. This structure is captured in the grammar

shown in Figure B.2 (a similar grammar appears in (20:38-39).

Taxonomykrchitecture "levels" Level+ 'modules" Module+

Level : * ame FormTitle ("true" I 'If also") {QuestionList+) "end"
Quest ion (= condit ion) Inlolequired+ Quest ionType
question~yp :tn Stack I TextQ I Numeric I Checklist
Stack : *"stack' Response+ <Value)
TeztQ :*"text" MaxSize {Action+} fValue)
Numeric ::-"numeric" lumlango {lumiction+} {Value}
Checklist -"checklist" Response+ {Value})
Response : *ResponseString fiction+)
lumAction : umamn e Action+
lumlange ,: "V" Ninlum "." Maxium "I"

VarSet : -"variable-.set" "'(" Actionld "," Value 191"

Save : -"save-.value" "'(" Actionld I')"
Activate : : activate..lovel"o "0" Lovellaze "10"

Deactivate :-"doactivate-.level" "C" LevelName 991"

Module : alaeTeit {Sub~odule+) {ModDecl*} {ModRIel*
Sub~odule (Condit ion) lam*ezot SubloduleType {"{"I Parameter+ }"
Parameter :- ameText "Is" (Value I "{" Parameter+ "P")
ModDecl : *"dodl" "C" lameText "," ModDeclType ","1 Value "90"

ModRel ::-"rel" "0" lameTezt "f,#$ odlelType "$$

ModlelSource "'," ModlelTarget "," Value "90"

Value : wSubValue I StringL~iteral I "I" StringLiteral
Sub Value ::Intlum I Reallum I Identifier
Condition : uSimpleCond "A" SiupleCond I Condition "I" Simplecond
SimpleCond ::IsEqual I lotiqual I Leossfan I Great erThan I

LeesThanOriqual I GreaterThanOr~qual
IsEqual,:: Value "~eq" Value
NotEqual :aValue "so" Value
LessThan : -Value "It" Value
GreaterThan ::Value "gt"1 Value
LessamanOrlqual Value "Ile" Value
Great erflanfirEqual : Value "so" Value

Figure B.2 Specification Taxonomy and Architecture Construction Rules Grammar.

B-2

B.1.2 Library Component Structures. As described in Section 4.3.5, the Library

Component Structures category also defines a formal grammar shown in Figure B.3 (a

similar grammar appears in (20:40-41).

LibCompStruct ::a Nlme Scope+
Scope : lame ":" "module" "." {"declare" Docl+ {"relation" lel+} "end"

Decl ::= lame ":" ("type" to=" BaseType I
BaseType {"{" TypeParaaeter+ "}") { Expr})

TypeParamet4r ::lame "-"= (Epr I "{" TypeParaneter+ ,}")
Rol :N lame ":" BaneType "(" RelSource+ "," RelTarget+ ")" {"-" Expr}
Expr ::lu=nriclxpr I BoolExpr I String I Scopefeference I

FunctionExpr I AtExpr I RecordExpr I BaseType
NumericExpr :: nt I ea]l I legativeExpr I kddExpr I SubExpr I

MulExpr I DivExpr
legativeExpr :: "-" Expr

AddExpr : Expr "+" IFxpr
SubExpr :: Expr ."" Epr
NulExpr ::m Expr "*" Expr
DivExpr :: Expr "/" Expr
BoolExpr : "true" I "false" I lotExpr I AndExpr I OrExpr I GtExpr I

LtExpr I EqExpr I LeExpr I GeExpr I NeExpr
NotExpr : "not" Expr
AudExpr ::= Expr "and" Expr
OrExpr :: Expr "or" Expr
GtExpr : : Expr ">" Expr
LtExpr : Expr "<" Expr
EqExpr ::= Expr "" Kxpr
LeExpr : Expr "le" Expr
Gelxpr :: Expr "ge" Expr
IeExpr : E: Expr "ne" Expr
ScopeReference : :a Identifier++
FunctionExpr : lame "(" Expr+ ")"

AtExpr :: Expr "0" Identifier
RecordExpr : "[" Expr+ "]"

BaseType : Identifier I RecordType I SequenceType I SetType
RecordType :: "record" "<" RecordField÷ ">"

RecordField ::= lane {":" BaseType} {"=" Expr}
SequenceType : "sequence" "[" BaseType "I"
SetType : : "set" "(" BaseType ")"

Figure B.3 Library Component Structures Grammar.

B.1.3 Display Conventions. As described in Section 4.3.3, the Display Conven-

tions category has a formal structure. This structure is captured with the grammar shown

in Figure B.4 (a similar grammar appears in (20:40,41-42). There is an established dis-

play convention standard for visual components defined using this category. APTAS uses

interconnected icons to represent an application architecture. This architecture represents

B-3

Conventions ::= "table" Dame TypeDispDriver+ "end"
TypeDiapDriver N lame ":" "type" TypeDispRule+ ("display" I "hide")

"relations" ";"
TypeDispRule : l:=gam "->" "icon" "a" Identifier

{"label" "-" IconLabelPos IconLabelContent}
"default-position" "W" IconPos
{"contents" "I=" Contentlnto+ ("display" I "hide") "relations"}

RelationDriver :: lame ":" "relation" {"label" "-" RelLabelPos RelLabelContent}
"width" "'l" LineWidth {"color" "-" LineColor}

{"dash-count" "=" DashIum "dash-list" "a" DashLengths+}

"froim.end" "-" FromEndSymbol "to-end" "I" ToEndSyubol

"valid-pairs" "al" ValidPair+ {"extra.arg"} ";"

ValidPair ::a "C" TheSource "," TheTarget ")"

ConstraintDriver N lame ":" "constraint" Constraintfule+ ";"

ConstraintRule " " Fromlum "I," (Tolum 1 "1") "]"
"relation" RelationTyp* RelationEndType

Figure B.4 Display Convention Grammar.

the functional modules, their associated parameters and interfaces, and their relationships

to other modules. The knowledge base stores the specific icons used and their relative

display position on an architecture display. Shape, color, and position define what an icon

represents (20:8,9).

Boxes refer to functional modules. Blue boxes represent primitive modules, which

have reusable implementations in the knowledge base. Black boxes represent modules com-

posed of one or more submodules. Selecting a black box opens another canvas displaying

its submodules and their relationships. Orange boxes represent submodules that provide

interface functions to their parent module.

Circles and diamonds refer to a module's interfaces. Circles appearing on the left

side of a module represent incoming data (in-port). Circles appearing on the right side

of a module represent outgoing data (out-port). Diamonds refer to interface functions

available to parent modules. Color has no current importance; however, one might use

color to represent specific data types.

Lines refer to relationships between modules. Black lines connecting two circles rep-

resent a synchronous communication (handshake) between modules. Pink lines connecting

two circles represent an asynchronous communication (no handshake) between modules.

Red lines connecting a circle to a box represent an alias relation where data transmits

B-4

between a submodule and the interface. Orange lines connecting an orange box to another

box represent a parameter module relationship where the parent module accesses the in-

terface functions of the other submodule. Pink lines connecting a circle to a diamond

represent apply function relationships where the interface functions execute on incoming

data. Pink lines connecting a diamond to a circle represent a forward function result

relationship where outgoing data transmits the results of interface functions.

B.1.4 Type Descriptions. As described in Section 4.3.4, the Type Descriptions

category also has a formal structure. This structure is captured with the grammar shown

in Figure B.4.

Descriptions ::= Desc4 .:

Desc ::a lame ":" {DescText+} "S"

DescText ::- Text {":" I "," I ".'#}

Figure B.5 Type Description Grammar.

B.2 Transforming the Domain Model into the Knowledge Base

Transforming an evaluated domain model file into its corresponding knowledge base

files consisted of two functions. The first function parses the domain model file (using the

grammar from Figure A.1) into the REFINE object base. The second function writes a set

of knowledge base files based on the state of the object base. The actual transformation

was described in Section 5.3. The transformation predicates are repeated in Figure B.6.

To see the REFINE code that performs this transformation, refer to Appendix C.

B.3 Capabilities and Limitations of APTAS

The research of the APTAS composition process uncovered several powerful capa-

bilities (and some limitations). Some of these capabilities include specification elicitation,

design construction, rapid prototype simulation, and code generation.

The system elicits specification information through form questions and maps the set

of responses to a corresponding application architecture. Information required to specify

an application is separate from the information used to build an application architecture.

B-5

Vf If E FormObjs 8 3s 18 E SpecTazonomy
A Name(s) = Name(f)
A FormTitle(s) = TitleOfForm(f)
A ActiveFlag?(s) = Initiate?(f)
A QuestimList(s) = Questiona(f)Jl

Vm [(m E ModuleObjs
& TypeOfModulk(m) # PRI) 3r [r E ArchConstRule

A NameTezt(r) = Name(m)

A SubModuleLiat(r) = SubModRels(m)
A ModRelLiat(r) = Relations(m)
A ModDecdList(r) = Interfaces(m)
A (TypeOfModule(m) = ENV *

r = first(ArchConstRule)J]

Ym [(m E ModuleObjs
& TypeOfModule(m) = PRI) == 31 [l E LibCompStruct

A Name(l) = Name(m)
A DeclLiat(l) = Interfaces(m) U Parameters(m)
A RelList(l) = Relationa(m)]]

Vm [m E ModuleObjs 3 3d Id E Descriptions

A Name(d) = Name(m)

A TypeDesc(d) = DescOfModule(m)]]

Vm [m E ModuleObj8 • 3c [c E Conventions

A Name(c) = Name(m)
A Iconldentifier(c) = Modulelcon(m)f]

Figure B.6 Forward Transformation Postconditions.

The current state of a specification is identified using the forms stored in the Specification

Taxonomy. This category describes a powerful hierarchy similar to an abstract syntax

tree, with each node representing a specific form. Each form has a level identifier (very

similar to a pathname). The first form in the category is considered the root. Each form

may activate any of its descendant forms. However, all of a form's ancestors must also be

activated for the form to become available. The power of this category has a frustrating

limitation. A form cannot be used in a loop to specify information for a set of similar

components. For example, suppose a form sets up the attributes of a single target, and an

application may have any number of targets. If each target has different attributes, there

must be a separate form or set of questions for every component. Adding the capability

to loop through a set of questions to define a sequence of response sets would resolve this

limitation in eliciting specification information.

B-6

The system automatically transforms a specification into its corresponding archi-

tecture by "triggering" a sequence of rules in the Architecture Construction Rules. This

category, like the Specification Taxonomy, describes a powerful hierarchy similar to an

abstract syntax tree, with every node representing a specific module and every leaf repre-

senting primitive modules. The first module in this category is considered the root and is

the only rule that always "triggers" (regardless of specification information). This "envi-

ronment" rule APTAS could be used to set up an initial design if no forms are defined in

the Specification Taxonomy. The same loop limitation occurs with this category. Using

the example above, one must define a different module for every target even though they

are all the same except for their attribute values. Adding the loop capability would greatly

improve architecture construction.

Another limitation of APTAS is that the system has no capability to transform an

architecture design into its corresponding specification information. In fact, the system

only saves architecture designs (the application specification is never saved and the system

has no capability to save them). Therefore, the Tracking Engineer mV t respond to question

forms all over again to "playback" an application's specifications. There should be some

capability added to the system to save a specification state.

The system has a Graphical User Interface to display this architecture and to provide

an environment to add design details to the displayed architecture. Three knowledge base

categories capture support information used to display and modify architectures. The Dis-

play Conventions category defines the visual representation for each module (component),

for each parameter (component attribute), and for each relationship type (component re-

lationships). Display standards were declared in the APTAS documentation (20:8-9). No

documentation was found on how to build new visual representations (i.e., icons). The

Library Component Structures category defines the attribute (parameter and interface)

names and types for primitive modules. The value of an interface or parameter can be

changed or initialized using the Graphical User Interface. The Type Descriptions category

describes the modules, interface types, parameter types, and relationship types. Descrip-

tion information is a form of documentation and, although helpful, is not required. Most of

B-7

the information in these three categories can be derived from the Architecture Construction

Rules.

The system uses an architecture to synthesize CIDL code using the synthesis engine.

This engine uses two other knowledge base categories, as well as the Synthesis Support

information. The impact of the Coding Rules category was not studied. The Library

Modules category provides CIDL implementations of primitive modules. Each primitive

module implementation must support the parameters, interfaces, and relationships de-

clared in the Architecture Construction Rules and the Library Component Structures.

The CIDL programming language was a significant limitation to the APTAS system. Im-

plementing primitive modules in CIDL is not easy unless the programmer is very familiar

with both CIDL and the APTAS system. CIDL supports parallel processing and could

be argued to support object-oriented paradigms. However, there appears to be no reason

to select CIDL over another more familiar language that supports parallel processing and

object-oriented paradigms.

Overall, APTAS has great potential to improve software system quality and expedite

software system production. The single, most important obstacle to the APTAS system is

populating the knowledge base. As more domains are modeled, the potential for APTAS

increases (particularly when using the process described in this research).

B-8

Appendix C. REFINE Source Code

The REFINE source code may be obtained, upon request, from:

Maj Paul Bailor

AFIT/ENG

2950 P Street

Wright-Patterson AFB, OH 45433-7765

(513) 255-9263

DSN 785-9263

email: pbailor~afit.af.mil

C-1

Bibliography

1. Aho, Alfred B., et al. Compilers: Principles, Techniques, and Tools. Mark S. Dalton,
1985.

2. Anderson, Cynthia G. Creating and Manipulating Formalized Software Architec-
tures to Support a Domain-Oriented Application Composition System. MS thesis,
AFIT/GCS/ENG/92D-01, AFIT, 1992.

3. Arango, Guillermo. "Domain Analysis - From Art Form to Engineering Discipline."
Proceedings of the Fifth International Workshop on Software Specification and Design.
152-159. May 1989.

4. Basili, Victor R. and John D. Musa. "The Future Engineering of Software: A Man-
agement Perspective," IEEE Computer, 90-96 (September 1991).

5. Blackman, Samuel S. Multiple-Target Thacking with Radar Applications. Dedham,
MA: Artech House, Inc., 1986.

6. Cecil, Danny A. and Joseph A. Fullenkamp. Using Database Technology
to Support Domain-Oriented Application Composition Systems. MS thesis,
AFIT/GCS/ENG/93D-03, Graduate School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB, OH, December 1993.

7. Cossentine, Jay A. Developing a Sophisticated User Interface to Support
Domain-Oriented Application Composition and Generation Systems. MS thesis,
AFIT/GCS/ENG/93D-04, Graduate School of Engineering, Air Force Institute of
Technology, Air Force Institute of Technology (AU), Wright-Patterson AFB, OH, De-
cember 1993.

8. Crowley, Nancy. On the Automation of Object-Oriented Requirements Analysis. PhD
Dissertation, Air Force Institute of Technology, 1993.

9. D'Ippolito, Richard S. "Using Models in Software Engineering." Proceedings: TRI-
Ada '89. 256-264. 1989.

10. Gool, Warren E. Alternative Architectures for Domain-Oriented Application Composi-
tion and Generation Systems. MS thesis, AFIT/GCS/ENG/93D-11, Graduate School
of Engineering, Air Force Institute of Techonolgy (AU), Wright-Patterson AFB, OH,
December 1993.

11. Hayes-Roth, Frederick, et al. Building Ezpert Systems. Addison-Wesley Publishing
Company, Inc., 1983.

12. Hong, Lang, "MATLAB Implemenation: targtgen.m." Wright Laboratories, 1993.

13. Hovanessian, Shahan A. Introduction to Sensor Systems. Norwood, MA: Artech
House, Inc., 1988.

14. Iscoe, Neil. "Domain-Specific Reuse: An Object-Oriented and Knowledge-Based Ap-
proach." Tutorial from Software Reuse: Emerging Technology edited by Will Tracz,
299-308, IEEE Computer Society Press, 1989.

15. Iscoe, Neil. "Domain Modeling - Evolving Research." Proceedings of the Sixth Annual
Knowledge-Based Software Engineering Conference. 300-304. 1991.

BIB-1

16. Jensen, Paul S. Avionics Tracking System Specification for Automatic Code Synthesis.
Technical Report, Lockheed Software Technology Center, April 1990.

17. Jensen, Paul S. and Lori Ogata. DRAFT Final Report for Automatic Programming
Technologies for Avionics Software (APTAS). Technical Report, Lockheed Software
Technology Center, July 1991.

18. Kyo C. Kang, et al. Feature-Oriented Domain Analysis (FODA) Feasibility Study.
Technical Report, Software Engineering Institute, Carnegie Mellon University, Novem-
ber 1990.

19. Lee, Kenneth J., et al. Model-Based Software Development (draft). Technical Report,
Software Engineering Institute, December 1991.

20. Lockheed Software Technology Center. Software User's Manual for the Automatic
Programming Technologies for Avionics Software (APTAS) System, June 1991.

21. Louie, Joe, "Informal Electronic Mail Correspondence," August 1993.

22. Lowry, Michael R. "Software Engineering in the Twenty-first Century." Automating
Software Design edited by Michael R. Lowry and Rob D. McCartnery, 627-654,
AAAI Press/MIT Press, 1991.

23. Lubars, Mitchell D. "Domain Analysis and Domain Engineering in IDeA." Domain
Analysis and Software Systems Modeling edited by Guillermo Arango and Ruben
Prieto-Diaz, 163-177, IEEE Computer Society Press, 1991.

24. Marciniak, John J. and Donal J. Reifer. Software Acquisition Management Managing
the Acquisition of Custom Software Systems. Wiley Series in Industrial Software
Engineering Practice, John Wiley and Sons, Inc., 1990.

25. McCain, Ron. "Reusable Software Component Construction: A Product-Oriented
Paradigm." AIAA/ACM/NASA/IEEE Computers in Aerospace V Conference11.
125-135. October 1985.

26. Neighbors, James M. Software Construction Using Components. PhD dissertation,
University of California, Irvine, 1981.

27. Neighbors, James M. "Draco: A Method for Engineering Reusable Software Systems."
Domain Analysis and Software Systems Modeling edited by Guillermo Arango and
Ruben Prieto-Diaz, 34-52, IEEE Computer Society Press, 1991.

28. Ogush, Mike. "A Software Reuse Lexicon," CrossTalk (December 1992).

29. Polak, Wolfgang and Henson Graves. The CIDL Language User Manual. Lockheed
Software Technology Center, 1990.

30. Prieto-D. .z, Ruben. "Domain Analysis for Reusability." Proceedings of the 11th An-
nual International Computer Software and Application Conference. 23-29. IEEE
Computer Society Press, 1987.

31. Prieto-Diaz, Ruben. "Domain Analysis: An Introduction," ACM SIGSOFT Software
Engineering Notes, 15(2):47-54 (1990).

BIB-2

32. Randour, Marry Anne. Creating and Manipulating a Domain Specific Formal Object
Base. MS thesis, AFIT/GCS/ENG/92D-13, Graduate School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB, OH, December 1992.

33. Rasure, John, et al. "Visual Language and Software Development Environment for
Image Processing," International Journal of Imaging Systems and Technology, 2:183-
199 (1990).

34. Rumbaugh, James, et al. Object-Oriented Modeling and Design. Englewood Cliffs,
NJ: Prentice-Hall, Inc., 1991.

35. Smith, Douglas R. "KIDS: A Semiautomatic Program Development System," IEEE
Transactions on Software Engineering, 16:1024-1043 (September 1990).

36. Tracz, Will. "Domain Analysis Working Group Report - First International Workshop
on Software Reusability," ACM SIGSOFT Software Engineering Notes, 17(3):27-34
(July 1992).

37. Waggoner, Robert. Domain Modeling of Time-Dependent Systems. MS thesis,
AFIT/GCS/ENG/93D-23, Graduate School of Engineering, Air Force Institute of
Techonology (AU), Wright-Patterson AFB, OH, December 1993.

38. Warner, Russel M. A Method for Populating the Knowledge Base of AFIT's Domain-
Oriented Application Composition System. MS thesis, AFIT/GCS/ENG/93D-24,
Graduate School of Engineering, Air Force Institute of Technology (AU), Wright-
Patterson AFB, OH, December 1993.

39. Wartik, Steven and Ruben Prieto-Diaz. "Criteria for Comparing Reuse-Oriented
Domain Analysis Approaches," International Journal of Software Engineering and
Knowledge Engineering, 2:403-431 (September 1992).

40. Weide, Timothy. Development of a Visual System Interface to Support a Domain-
oriented Application Composition System. MS thesis, AFIT/GCS/ENG/93M-05,
Graduate School of Engineering, Air Force Institute of Technology(AU), Wright-
Patterson AFB, OH, March 1993.

41. Welgan, Robert L. Domain Analysis and Modeling of a Model-Based Software Ex-
ecutive. MS thesis, AFIT/GCS/ENG/93D-25, Graduate School of Engineering, Air
Force Institute of Technology (AU), Wright-Patterson AFB, OH, December 1993.

BIB-3

Vita

Raleigh Sandy was born December 2, 1967 in Prince George County MD. He grad-

uated from Fairborn High School in 1985 and then went to Virginia Polytechnic Institute

on a four-year Air Force Reserve Officer Training Corps scholarship. Upon graduation in

1989, he was commissioned a Second Lieutenant in the Air Force. He was assigned to the

3800th Civil Engineering Squadron at Maxwell AFB. In May 1992, he entered the Air Force

Institute of Technology to pursue a Master of Science degree in Computer Engineering.

Raleigh was married on January 1, 1988 to the former Janet Clemons. They have

two children: Raleigh (Lee) and Courtney.

Permanent address: 1188 Peebles Dr

Fairborn OH 45324

VITA-i

REPORT DOCUMENTATION PAGE Form Approved
1O OMB No 0704-0188

ze- ' -'r 5e 0.g-et -e: . .--, - ~ :'%wm]&'cet., •r'a i-i +, " C~,+. :j' 3e+t<1 ".Ce'1e i-c, ¢: "~tr : +: o - . ' + . -÷ 2 • " S'"• 2::m'~e+t, r+l'.•j " • !-. s :•+ O + em •: "'.t rc +'n', Ether ,awec! •t t*'•
-cliect~on ":- ~ 'C 1ý a0 ',,- ~ '21 111'. 'e' n. P, 4- t% 'ec2'i'-' - 'R.~.D '~~dl cewn$. ý 's '.fe'ic.'
0&ýi-.s . i, t. re '2'4 , A . gt 1, . 22' 2.33C2 &,a 1 3 eed - 0, e . : " 10+-4-3'9S) tas,< 1,tCr ; 3c 50o 3

"1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

I December 1993 Master's Thesis
"4. TITLE AND SUBTITLE S. FUNDING NUMBERS

A METHOD FOR POPULATING THE KNOWLEDGE BASEOF APTAS,
A DOMAIN-ORIENTED APPLICATIONCOMPOSITION SYSTEM

6. AUTHOR(S)

Raleigh A. Sandy III

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology, WPAFB OH 45433-6583 AFIT/GCE/ENG/93D.13

"9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADORESS(ES) 10. SPONSORING /MONITORING

AGENCY REPORT NUMBER
Mr John Werthmann
WL/AART BLDG 22
Wright-Patterson AFB, OH 45433-7765

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Distribution Unlimited

13. ABSTRACT (Maximum 200 words)

A formal process is described for populating the knowledge base of the Automatic Programming Technologies for
Avionics Software (APTAS) system. This process was developed using a general knowledge base population process
that applies to many knowledge-based software engineering systems. This general process is also described. The
formal process for APTAS was demonstrated by storing new information from the radar tracking domain into the
knowledge base of APTAS. Several procedures (some automatic and some manual) were implemented to support the
formal process.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Knowiedge Base Population, Domain Analysis, Knowledge-Based Systems, Expert 1.PRIC
Systems, Knowledge Acquisition, Software Engineering 16 I CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)

